|   | 
Details
   web
Records
Author Ashkenazi, I. E.; Reinberg, A,; Bicakova-Rocher, A.; Ticher, A.
Title The genetic background of individual variations of circadian-rhythm periods in healthy human adults. Type Journal Article
Year 1993 Publication American Journal of Human Genetics Abbreviated Journal
Volume 52 Issue 6 Pages 1250–1259
Keywords Human Health; Adult; Body Temperature; Bronchi; Bronchi: physiology; Circadian Rhythm; Circadian Rhythm: genetics; Female; Genetic Variation; Hand; Hand: physiology; Heart Rate; Humans; Male; Middle Aged; Sex Factors; Sleep
Abstract As a group phenomenon, human variables exhibit a rhythm with a period (tau) equal to 24 h. However, healthy human adults may differ from one another with regard to the persistence of the 24-h periods of a set of variables' rhythms within a given individual. Such an internal desynchronization (or individual circadian dyschronism) was documented during isolation experiments without time cues, both in the present study involving 78 male shift workers and in 20 males and 19 females living in a natural setting. Circadian rhythms of sleep-wake cycles, oral temperature, grip strength of both hands, and heart rate were recorded, and power-spectra analyses of individual time series of about 15 days were used to quantify the rhythm period of each variable. The period of the sleep-wake cycle seldom differed from 24 h, while rhythm periods of the other variables exhibited a trimodal distribution (tau = 24 h, tau > 24 h, tau < 24 h). Among the temperature rhythm periods which were either < 24 h or > 24 h, none was detected between 23.2 and 24 h or between 24 and 24.8 h. Furthermore, the deviations from the 24-h period were predominantly grouped in multiples of +/- 0.8 h. Similar results were obtained when the rhythm periods of hand grip strength were analyzed (for each hand separately). In addition, the distribution of grip strength rhythm periods of the left hand exhibited a gender-related difference. These results suggested the presence of genetically controlled variability. Consequently, the distribution pattern of the periods was analyzed to elucidate its compatibility with a genetic control consisting of either a two-allele system, a multiple-allele system, or a polygenic system. The analysis resulted in structuring a model which integrates the function of a constitutive (essential) gene which produces the exact 24-h period (the Dian domain) with a set of (inducible) polygenes, the alleles of which, contribute identical time entities to the period. The time entities which affected the rhythm periods of the variables examined were in the magnitude of +/- 0.8 h. Such an assembly of genes may create periods ranging from 20 to 28 h (the Circadian domain). The model was termed by us “The Dian-Circadian Model.” This model can also be used to explain the beat phenomena in biological rhythms, the presence of 7-d and 30-d periods, and interindividual differences in sensitivity of rhythm characteristics (phase shifts, synchronization, etc.) to external (and environmental) factors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 582
Permanent link to this record
 

 
Author Bedrosian, T.A.; Vaughn, C.A.; Galan, A.; Daye, G.; Weil, Z.M.; Nelson, R.J.
Title Nocturnal light exposure impairs affective responses in a wavelength-dependent manner Type Journal Article
Year 2013 Publication The Journal of Neuroscience : the Official Journal of the Society for Neuroscience Abbreviated Journal J Neurosci
Volume 33 Issue 32 Pages 13081-13087
Keywords Analysis of Variance; Animals; Circadian Rhythm/*physiology; Cricetinae; Dose-Response Relationship, Radiation; Female; Food Deprivation/physiology; Food Preferences/physiology/radiation effects; Fourier Analysis; Gene Expression Regulation/radiation effects; Hippocampus/pathology/radiation effects; Immobility Response, Tonic/radiation effects; Light/*adverse effects; Mood Disorders/*etiology/pathology; Motor Activity/physiology/radiation effects; Phodopus; Proto-Oncogene Proteins c-fos/metabolism; Social Behavior; Suprachiasmatic Nucleus/metabolism; Time Factors
Abstract Life on earth is entrained to a 24 h solar cycle that synchronizes circadian rhythms in physiology and behavior; light is the most potent entraining cue. In mammals, light is detected by (1) rods and cones, which mediate visual function, and (2) intrinsically photosensitive retinal ganglion cells (ipRGCs), which primarily project to the suprachiasmatic nucleus (SCN) in the hypothalamus to regulate circadian rhythms. Recent evidence, however, demonstrates that ipRGCs also project to limbic brain regions, suggesting that, through this pathway, light may have a role in cognition and mood. Therefore, it follows that unnatural exposure to light may have negative consequences for mood or behavior. Modern environmental lighting conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights. We hypothesized that nocturnal light exposure (i.e., dim LAN) would induce depressive responses and alter neuronal structure in hamsters (Phodopus sungorus). If this effect is mediated by ipRGCs, which have reduced sensitivity to red wavelength light, then we predicted that red LAN would have limited effects on brain and behavior compared with shorter wavelengths. Additionally, red LAN would not induce c-Fos activation in the SCN. Our results demonstrate that exposure to LAN influences behavior and neuronal plasticity and that this effect is likely mediated by ipRGCs. Modern sources of LAN that contain blue wavelengths may be particularly disruptive to the circadian system, potentially contributing to altered mood regulation.
Address Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA. Bedrosian.2@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0270-6474 ISBN Medium
Area Expedition Conference
Notes PMID:23926261 Approved no
Call Number IDA @ john @ Serial 27
Permanent link to this record
 

 
Author Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 28 Issue 4 Pages 262-271
Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity
Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:23929553; PMCID:PMC4033305 Approved no
Call Number IDA @ john @ Serial 28
Permanent link to this record
 

 
Author Evans, J.A.; Elliott, J.A.; Gorman, M.R.
Title Circadian effects of light no brighter than moonlight Type Journal Article
Year 2007 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 22 Issue 4 Pages 356-367
Keywords Animals; Biological Clocks/physiology/*radiation effects; *Circadian Rhythm; Cricetinae; Dose-Response Relationship, Radiation; Lighting/*methods; Male; Mesocricetus; Motor Activity; Oscillometry; Photic Stimulation/methods; *Photoperiod; Physical Conditioning, Animal; Time Factors
Abstract In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 x 10(-9) W/cm(2), peak lambda = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (alpha) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long alpha that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on alpha, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.
Address Department of Psychology, University of California, San Diego, La Jolla, CA 92093, usa. jaevans@ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:17660452 Approved no
Call Number IDA @ john @ Serial 31
Permanent link to this record
 

 
Author Schoech, S.J.; Bowman, R.; Hahn, T.P.; Goymann, W.; Schwabl, I.; Bridge, E.S.
Title The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica) Type Journal Article
Year 2013 Publication Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology Abbreviated Journal J Exp Zool A Ecol Genet Physiol
Volume 319 Issue 9 Pages 527-538
Keywords Animals; Corticosterone/blood; Ecosystem; Female; *Light; Male; Melatonin/blood; Passeriformes/*physiology; *Photoperiod; Reproduction/*physiology; Testosterone/blood
Abstract Florida scrub-jays (Aphelocoma coerulescens) in the suburbs breed earlier than jays in native habitat. Amongst the possible factors that influence this advance (e.g., food availability, microclimate, predator regime, etc.), is exposure to artificial lights at night (LAN). LAN could stimulate the reproductive axis of the suburban jays. Alternatively, LAN could inhibit pineal melatonin (MEL), thus removing its inhibitory influence on the reproductive axis. Because Florida scrub-jays are a threatened species, we used western scrub-jays (Aphelocoma californica) to investigate the effects of LAN upon reproductive hormones and melatonin. Jays were held under conditions in which the dark-phase of the light:dark cycle was without illumination and then under low levels of LAN. Under both conditions, birds were exposed first to short-days (9.5L:14.5D) that were gradually increased to long-days (14.5L:9.5D). At various times, blood samples were collected during the light part of the cycle to measure reproductive hormones (luteinizing hormone, LH; testosterone, T; and estradiol, E2 ). Similarly, samples to assess melatonin were collected during the dark. In males, LAN caused a depression in LH levels and levels were approximately 4x greater under long- than short-days. In females, there was no effect of LAN or photoperiod upon LH. LAN resulted in depressed T levels in females, although there was no effect on T in males. E2 levels in both sexes were lower under LAN than under an unlighted dark-phase. Paradoxically, MEL was higher in jays under LAN, and under long-days. MEL did not differ by sex. LAN disrupted the extraordinarily strong correlation between T and E2 that existed under unlighted nocturnal conditions. Overall, our findings fail to support the hypothesis that LAN stimulates the reproductive axis. Rather, the data demonstrate that LAN tends to inhibit reproductive hormone secretion, although not in a consistent fashion between the sexes.
Address Department of Biological Sciences, University of Memphis, Memphis, Tennessee
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-5223 ISBN Medium
Area Expedition Conference
Notes PMID:23970442 Approved no
Call Number IDA @ john @ Serial 37
Permanent link to this record