|   | 
Details
   web
Records
Author Bullough, J.D.; Rea, M.S.; Figueiro, M.G.
Title Of mice and women: light as a circadian stimulus in breast cancer research Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue 4 Pages 375-383
Keywords Human Health; Animals; Breast Neoplasms/*physiopathology; *Circadian Rhythm; *Disease Models, Animal; Female; Humans; *Light; Light Signal Transduction; Mammary Neoplasms, Animal/*physiopathology; Melatonin/metabolism; Mice; Muridae/metabolism
Abstract OBJECTIVE: Nocturnal rodents are frequently used as models in human breast cancer research, but these species have very different visual and circadian systems and, therefore, very different responses to optical radiation or, informally, light. Because of the impact of light on the circadian system and because recent evidence suggests that cancer risk might be related to circadian disruption, it is becoming increasingly clear that optical radiation must be properly characterized for both nocturnal rodents and diurnal humans to make significant progress in unraveling links between circadian disruption and breast cancer. In this paper, we propose a quantitative framework for comparing radiometric and photometric quantities in human and rodent studies. METHODS: We reviewed published research on light as a circadian stimulus for humans and rodents. Both suppression of nocturnal melatonin and phase shifting were examined as outcome measures for the circadian system. RESULTS: The data were used to develop quantitative comparisons regarding the absolute and spectral sensitivity for the circadian systems of humans and nocturnal rodents. CONCLUSIONS: Two models of circadian phototransduction, for mouse and humans, have been published providing spectral sensitivities for these two species. Despite some methodological variations among the studies reviewed, the circadian systems of nocturnal rodents are approximately 10,000 times more sensitive to optical radiation than that of humans. Circadian effectiveness of different sources for both humans and nocturnal rodents are offered together with a scale relating their absolute sensitivities. Instruments calibrated in terms of conventional photometric units (e.g., lux) will not accurately characterize the circadian stimulus for either humans or rodents.
Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA. bulloj@rpi.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16596289 Approved no
Call Number LoNNe @ kagoburian @ Serial 726
Permanent link to this record
 

 
Author Stevens, R.G.
Title Artificial lighting in the industrialized world: circadian disruption and breast cancer Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue 4 Pages 501-507
Keywords Human Health; Alcohol Drinking/adverse effects; Animals; Breast Neoplasms/*etiology; Chronobiology Disorders/*etiology/physiopathology; Circadian Rhythm; Developing Countries; Female; Humans; Lighting/*adverse effects; Melatonin/metabolism; Risk Factors; Suprachiasmatic Nucleus/physiopathology
Abstract Breast cancer risk is high in industrialized societies, and increases as developing countries become more Westernized. The reasons are poorly understood. One possibility is circadian disruption from aspects of modern life, in particular the increasing use of electric power to light the night, and provide a sun-free environment during the day inside buildings. Circadian disruption could lead to alterations in melatonin production and in changing the molecular time of the circadian clock in the suprachiasmatic nuclei (SCN). There is evidence in humans that the endogenous melatonin rhythm is stronger for persons in a bright-day environment than in a dim-day environment; and the light intensity necessary to suppress melatonin at night continues to decline as new experiments are done. Melatonin suppression can increase breast tumorigenesis in experimental animals, and altering the endogenous clock mechanism may have downstream effects on cell cycle regulatory genes pertinent to breast tissue development and susceptibility. Therefore, maintenance of a solar day-aligned circadian rhythm in endogenous melatonin and in clock gene expression by exposure to a bright day and a dark night, may be a worthy goal. However, exogenous administration of melatonin in an attempt to achieve this goal may have an untoward effect given that pharmacologic dosing with melatonin has been shown to phase shift humans depending on the time of day it's given. Exogenous melatonin may therefore contribute to circadian disruption rather than alleviate it.
Address University of Connecticut Health Center, Farmington, CT 06030-6325, USA. bugs@neuron.uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes (up) PMID:16596303 Approved no
Call Number LoNNe @ kagoburian @ Serial 818
Permanent link to this record
 

 
Author Wilhelm, I.; Born, J.; Kudielka, B.M.; Schlotz, W.; Wust, S.
Title Is the cortisol awakening rise a response to awakening? Type Journal Article
Year 2007 Publication Psychoneuroendocrinology Abbreviated Journal Psychoneuroendocrinology
Volume 32 Issue 4 Pages 358-366
Keywords Human Health; Adrenocorticotropic Hormone/blood; Adult; Arousal/*physiology; Circadian Rhythm; Humans; Hydrocortisone/blood/*metabolism; Hypothalamo-Hypophyseal System/physiology; Male; Pituitary-Adrenal System/physiology; Saliva/chemistry; Sleep/physiology
Abstract A distinct rise in cortisol levels that occurs after morning awakening is increasingly used as an indicator of adrenocortical activity which is associated with different pathologies. Although it was previously assumed that the transition from sleep to wake is essential for the occurrence of the cortisol morning rise, this has never been tested. Here, we examined 16 healthy young men (20-33 yrs) between 2300 and 0800 h under sleep laboratory conditions. Serum cortisol and plasma adrenocorticotropin (ACTH) as well as salivary cortisol levels (after subjects were woken up at 0700 h) were repeatedly assessed. In a supplementary study condition, salivary cortisol levels in the first hour after awakening were measured at the subjects' home on two consecutive days. Comparison of pre- and post awakening measurements revealed significantly steeper increases in cortisol and ACTH after awakening. The rise in cortisol upon awakening under laboratory conditions did not significantly differ from that observed at home. We conclude that the cortisol increase after awakening is a response to morning awakening that is distinct from the circadian rise in hypothalamo-pituitary-adrenal (HPA) activity in the morning hours. Although the cortisol awakening response is modulated by circadian influences, it primarily reflects phasic psychophysiological processes specific to the sleep-wake transition.
Address Department of Psychobiology, University of Trier, Johanniterufer 15, 54290 Trier, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4530 ISBN Medium
Area Expedition Conference
Notes (up) PMID:17408865 Approved no
Call Number LoNNe @ kagoburian @ Serial 834
Permanent link to this record
 

 
Author Srinivasan, V.; Spence, D.W.; Pandi-Perumal, S.R.; Trakht, I.; Esquifino, A.I.; Cardinali, D.P.; Maestroni, G.J.
Title Melatonin, environmental light, and breast cancer Type Journal Article
Year 2008 Publication Breast Cancer Research and Treatment Abbreviated Journal Breast Cancer Res Treat
Volume 108 Issue 3 Pages 339-350
Keywords Human Health; Breast Neoplasms/*etiology/*physiopathology; Circadian Rhythm/physiology; Female; Humans; Light; Lighting/*adverse effects; Melatonin/*physiology; Occupational Exposure/adverse effects
Abstract Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) alpha-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.
Address Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-6806 ISBN Medium
Area Expedition Conference
Notes (up) PMID:17541739 Approved no
Call Number LoNNe @ kagoburian @ Serial 815
Permanent link to this record
 

 
Author Evans, J.A.; Elliott, J.A.; Gorman, M.R.
Title Circadian effects of light no brighter than moonlight Type Journal Article
Year 2007 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 22 Issue 4 Pages 356-367
Keywords Animals; Biological Clocks/physiology/*radiation effects; *Circadian Rhythm; Cricetinae; Dose-Response Relationship, Radiation; Lighting/*methods; Male; Mesocricetus; Motor Activity; Oscillometry; Photic Stimulation/methods; *Photoperiod; Physical Conditioning, Animal; Time Factors
Abstract In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 x 10(-9) W/cm(2), peak lambda = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (alpha) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long alpha that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on alpha, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.
Address Department of Psychology, University of California, San Diego, La Jolla, CA 92093, usa. jaevans@ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes (up) PMID:17660452 Approved no
Call Number IDA @ john @ Serial 31
Permanent link to this record