|   | 
Details
   web
Records
Author Yasuniwa, Y.; Izumi, H.; Wang, K.-Y.; Shimajiri, S.; Sasaguri, Y.; Kawai, K.; Kasai, H.; Shimada, T.; Miyake, K.; Kashiwagi, E.; Hirano, G.; Kidani, A.; Akiyama, M.; Han, B.; Wu, Y.; Ieiri, I.; Higuchi, S.; Kohno, K.
Title Circadian disruption accelerates tumor growth and angio/stromagenesis through a Wnt signaling pathway Type Journal Article
Year 2010 Publication PloS one Abbreviated Journal PLoS One
Volume 5 Issue 12 Pages e15330
Keywords Animals; *Circadian Rhythm; Disease Progression; *Gene Expression Regulation, Neoplastic; HeLa Cells; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Transplantation; Neoplasms/*pathology; *Neovascularization, Pathologic; Nerve Tissue Proteins/metabolism; Skin/metabolism; Vascular Endothelial Growth Factor A/metabolism; Wnt Proteins/*metabolism; Oncogenesis
Abstract Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway.
Address Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes (up) PMID:21203463; PMCID:PMC3009728 Approved no
Call Number IDA @ john @ Serial 162
Permanent link to this record
 

 
Author Chellappa, S.L.; Steiner, R.; Blattner, P.; Oelhafen, P.; Gotz, T.; Cajochen, C.
Title Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? Type Journal Article
Year 2011 Publication PloS one Abbreviated Journal PLoS One
Volume 6 Issue 1 Pages e16429
Keywords Circadian Rhythm/radiation effects; Cognition/*radiation effects; Color; Cross-Over Studies; Fluorescence; Humans; *Light; Male; Melatonin/*radiation effects; Reaction Time/*radiation effects; Young Adult; blue light
Abstract BACKGROUND: Light exposure can cascade numerous effects on the human circadian process via the non-imaging forming system, whose spectral relevance is highest in the short-wavelength range. Here we investigated if commercially available compact fluorescent lamps with different colour temperatures can impact on alertness and cognitive performance. METHODS: Sixteen healthy young men were studied in a balanced cross-over design with light exposure of 3 different light settings (compact fluorescent lamps with light of 40 lux at 6500K and at 2500K and incandescent lamps of 40 lux at 3000K) during 2 h in the evening. RESULTS: Exposure to light at 6500K induced greater melatonin suppression, together with enhanced subjective alertness, well-being and visual comfort. With respect to cognitive performance, light at 6500K led to significantly faster reaction times in tasks associated with sustained attention (Psychomotor Vigilance and GO/NOGO Task), but not in tasks associated with executive function (Paced Visual Serial Addition Task). This cognitive improvement was strongly related with attenuated salivary melatonin levels, particularly for the light condition at 6500K. CONCLUSIONS: Our findings suggest that the sensitivity of the human alerting and cognitive response to polychromatic light at levels as low as 40 lux, is blue-shifted relative to the three-cone visual photopic system. Thus, the selection of commercially available compact fluorescent lights with different colour temperatures significantly impacts on circadian physiology and cognitive performance at home and in the workplace.
Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes (up) PMID:21298068; PMCID:PMC3027693 Approved no
Call Number IDA @ john @ Serial 286
Permanent link to this record
 

 
Author Sherman, H.; Gutman, R.; Chapnik, N.; Meylan, J.; le Coutre, J.; Froy, O.
Title Caffeine alters circadian rhythms and expression of disease and metabolic markers Type Journal Article
Year 2011 Publication The International Journal of Biochemistry & Cell Biology Abbreviated Journal Int J Biochem Cell Biol
Volume 43 Issue 5 Pages 829-838
Keywords Human Health; Animals; Biological Markers/blood/metabolism; Body Weight/drug effects/physiology; Caffeine/*pharmacology; Caloric Restriction; Circadian Rhythm/*drug effects/genetics/physiology; *Disease/genetics; Eating/drug effects/physiology; Gene Expression Regulation/*drug effects/genetics; HEK293 Cells; Humans; Inflammation/metabolism; Male; Mice; Mice, Inbred C57BL; Motor Activity/drug effects/physiology
Abstract The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.
Address Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1357-2725 ISBN Medium
Area Expedition Conference
Notes (up) PMID:21352949 Approved no
Call Number LoNNe @ kagoburian @ Serial 810
Permanent link to this record
 

 
Author Cajochen, C.; Frey, S.; Anders, D.; Spati, J.; Bues, M.; Pross, A.; Mager, R.; Wirz-Justice, A.; Stefani, O.
Title Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance Type Journal Article
Year 2011 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol (1985)
Volume 110 Issue 5 Pages 1432-1438
Keywords Adult; Circadian Rhythm/*physiology/radiation effects; Cognition/*physiology/radiation effects; *Computer Terminals; Humans; Light; Lighting/*methods; Male; Photic Stimulation/*methods; Radiation Dosage; Semiconductors; *Task Performance and Analysis; Young Adult; blue light; sleep; circadian disruption
Abstract Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LED-backlit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian x m(2)) [W/(sr x m(2))], 2.1 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr x m(2)), 0.7 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 Hz) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by “explicit timing”; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.
Address Centre for Chronobiology, Psychiatric Hospitals of the University of Basel, Basel, Switzerland. christian.cajochen@upkbs.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-7567 ISBN Medium
Area Expedition Conference
Notes (up) PMID:21415172 Approved no
Call Number IDA @ john @ Serial 293
Permanent link to this record
 

 
Author Sharkey, K.M.; Carskadon, M.A.; Figueiro, M.G.; Zhu, Y.; Rea, M.S.
Title Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules Type Journal Article
Year 2011 Publication Sleep Medicine Abbreviated Journal Sleep Med
Volume 12 Issue 7 Pages 685-692
Keywords Affect/physiology/radiation effects; Circadian Rhythm/*physiology/*radiation effects; Color; Dose-Response Relationship, Radiation; Female; Humans; *Light; Male; Melatonin/metabolism; Photoperiod; Phototherapy/*methods; Saliva/metabolism; Sleep/physiology/radiation effects; Sleep Disorders, Circadian Rhythm/prevention & control/*therapy; Stress, Psychological/prevention & control/therapy; Treatment Outcome; Young Adult; blue light
Abstract OBJECTIVE: We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age+/-SD=21.8+/-3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase disorder (DSPD). METHODS: After a baseline week, participants kept individualized, fixed, advanced 7.5-h sleep schedules for 6days. Participants were randomly assigned to groups to receive “blue” (470nm, approximately 225lux, n=12) or “dim” (<1lux, n=13) light for 1h after waking each day. Head-worn “Daysimeters” measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2x2 ANOVA. RESULTS: After 6days, both groups showed significant circadian phase advances, but morning blue light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean+/-SD) were 1.5+/-1.1h in the dim light group and 1.4+/-0.7h in the blue light group. CONCLUSIONS: Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults.
Address Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University, Box G-RIH, Providence, RI 02912, USA. katherine_sharkey@brown.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1389-9457 ISBN Medium
Area Expedition Conference
Notes (up) PMID:21704557; PMCID:PMC3145013 Approved no
Call Number IDA @ john @ Serial 303
Permanent link to this record