|   | 
Details
   web
Records
Author Martinez-Nicolas, A.; Ortiz-Tudela, E.; Madrid, J.A.; Rol, M.A.
Title Crosstalk between environmental light and internal time in humans Type Journal Article
Year 2011 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 28 Issue 7 Pages 617-629
Keywords Adolescent; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cues; *Environment; Female; Humans; *Light; Male; Sleep; Spain; Temperature; *Time; Young Adult
Abstract Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18-23 yrs) were recruited in Murcia, Spain (latitude 38 degrees 01'N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption.
Address Chronobiology Laboratory, Department of Physiology, University of Murcia, Murcia, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes (up) PMID:21793693 Approved no
Call Number IDA @ john @ Serial 302
Permanent link to this record
 

 
Author Kessel, L.; Siganos, G.; Jorgensen, T.; Larsen, M.
Title Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing Type Journal Article
Year 2011 Publication Sleep Abbreviated Journal Sleep
Volume 34 Issue 9 Pages 1215-1219
Keywords Adult; Age Factors; Aging/*pathology/physiology; Circadian Rhythm/physiology; Cross-Sectional Studies; Female; Fluorometry; Humans; Lens, Crystalline/*pathology/physiopathology; *Light; Male; Middle Aged; Retina/*physiopathology; Risk Factors; *Scattering, Radiation; Sleep Disorders/*etiology; Circadian rhythm; cataract; melanopsin; sleep; blue light
Abstract STUDY OBJECTIVES: Sleep pattern and circadian rhythms are regulated via the retinohypothalamic tract in response to stimulation of a subset of retinal ganglion cells, predominantly by blue light (450-490 nm). With age, the transmission of blue light to the retina is reduced because of the aging process of the human lens, and this may impair the photoentrainment of circadian rhythm leading to sleep disorders. The aim of the study was to examine the association between lens aging and sleep disorders. DESIGN: Cross-sectional population based study. SETTING: The study was performed at the Research Center for Prevention and Health, Glostrup Hospital, Denmark and at the Department of Ophthalmology, Herlev Hospital, Denmark. PARTICIPANTS: An age- and sex-stratified sample of 970 persons aged 30 to 60 years of age drawn from a sample randomly selected from the background population. INTERVENTIONS: Not applicable. MEASUREMENTS AND RESULTS: Sleep disturbances were evaluated by a combination of questionnaire and the use of prescription sleeping medication. Lens aging (transmission and yellowing) was measured objectively by lens autofluorometry. The risk of sleep disturbances was significantly increased when the transmission of blue light to the retina was low, even after correction for the effect of age and other confounding factors such as smoking habits, diabetes mellitus, gender, and the risk of ischemic heart disease (P < 0.0001). CONCLUSIONS: Filtration of blue light by the aging lens was significantly associated with an increased risk of sleep disturbances. We propose that this is a result of disturbance of photoentrainment of circadian rhythms.
Address Department of Ophthalmology, Glostrup Hospital, University of Copenhagen, Denmark. line.kessel@dadlnet.dk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes (up) PMID:21886359; PMCID:PMC3157663 Approved no
Call Number IDA @ john @ Serial 344
Permanent link to this record
 

 
Author Santhi, N.; Thorne, H.C.; van der Veen, D.R.; Johnsen, S.; Mills, S.L.; Hommes, V.; Schlangen, L.J.M.; Archer, S.N.; Dijk, D.-J.
Title The spectral composition of evening light and individual differences in the suppression of melatonin and delay of sleep in humans Type Journal Article
Year 2012 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res
Volume 53 Issue 1 Pages 47-59
Keywords Human Health; Adult; *Circadian Clocks; Cross-Sectional Studies; Electroencephalography; Female; Humans; Male; Melatonin/*metabolism; Photic Stimulation; *Photoperiod; Rod Opsins/*metabolism; *Sleep; *Sleep Disorders, Circadian Rhythm/etiology/metabolism/physiopathology; Time Factors
Abstract The effect of light on circadian rhythms and sleep is mediated by a multi-component photoreceptive system of rods, cones and melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The intensity and spectral sensitivity characteristics of this system are to be fully determined. Whether the intensity and spectral composition of light exposure at home in the evening is such that it delays circadian rhythms and sleep also remains to be established. We monitored light exposure at home during 6-8wk and assessed light effects on sleep and circadian rhythms in the laboratory. Twenty-two women and men (23.1+/-4.7yr) participated in a six-way, cross-over design using polychromatic light conditions relevant to the light exposure at home, but with reduced, intermediate or enhanced efficacy with respect to the photopic and melanopsin systems. The evening rise of melatonin, sleepiness and EEG-assessed sleep onset varied significantly (P<0.01) across the light conditions, and these effects appeared to be largely mediated by the melanopsin, rather than the photopic system. Moreover, there were individual differences in the sensitivity to the disruptive effect of light on melatonin, which were robust against experimental manipulations (intra-class correlation=0.44). The data show that light at home in the evening affects circadian physiology and imply that the spectral composition of artificial light can be modified to minimize this disruptive effect on sleep and circadian rhythms. These findings have implications for our understanding of the contribution of artificial light exposure to sleep and circadian rhythm disorders such as delayed sleep phase disorder.
Address Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK. n.santhi@surrey.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-3098 ISBN Medium
Area Expedition Conference
Notes (up) PMID:22017511 Approved no
Call Number LoNNe @ kagoburian @ Serial 802
Permanent link to this record
 

 
Author Evans, J.A.; Carter, S.N.; Freeman, D.A.; Gorman, M.R.
Title Dim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways Type Journal Article
Year 2012 Publication Neuroscience Abbreviated Journal Neuroscience
Volume 202 Issue Pages 300-308
Keywords Animals; Biological Clocks/physiology; Circadian Rhythm/physiology; Cricetinae; Darkness; Data Interpretation, Statistical; Geniculate Bodies/*physiology; *Lighting; Male; Motor Activity/physiology; Phodopus; *Photoperiod; Visual Pathways/*physiology
Abstract In mammals, light entrains the central pacemaker within the suprachiasmatic nucleus (SCN) through both a direct neuronal projection from the retina and an indirect projection from the intergeniculate leaflet (IGL) of the thalamus. Although light comparable in intensity to moonlight is minimally effective at resetting the phase of the circadian clock, dimly lit and completely dark nights are nevertheless perceived differentially by the circadian system, even when nighttime illumination is below putative thresholds for phase resetting. Under a variety of experimental paradigms, dim nighttime illumination exerts effects that may be characterized as enhancing the plasticity of circadian entrainment. For example, relative to completely dark nights, dimly lit nights accelerate development of photoperiodic responses of Siberian hamsters transferred from summer to winter day lengths. Here we assess the neural pathways underlying this response by testing whether IGL lesions eliminate the effects of dim nighttime illumination under short day lengths. Consistent with previous work, dimly lit nights facilitated the expansion of activity duration under short day lengths. Ablation of the IGL, moreover, did not influence photoperiodic responses in animals held under completely dark nights. However, among animals that were provided dimly lit nights, IGL lesions prevented the short-day typical expansion of activity duration as well as the seasonally appropriate gonadal regression and reduction in body weight. Thus, the present data indicate that the IGL plays a central role in mediating the facilitative effects of dim nighttime illumination under short day lengths, but in the absence of the IGL, dim light at night influences photoperiodic responses through residual photic pathways.
Address Department of Psychology, University of California, San Diego, La Jolla, CA, USA. jevans@msm.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4522 ISBN Medium
Area Expedition Conference
Notes (up) PMID:22155265; PMCID:PMC3578228 Approved no
Call Number IDA @ john @ Serial 87
Permanent link to this record
 

 
Author Chellappa, S.L.; Viola, A.U.; Schmidt, C.; Bachmann, V.; Gabel, V.; Maire, M.; Reichert, C.F.; Valomon, A.; Gotz, T.; Landolt, H.-P.; Cajochen, C.
Title Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3 Type Journal Article
Year 2012 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume 97 Issue 3 Pages E433-7
Keywords Adult; Alleles; Cross-Over Studies; Female; Genotype; Homozygote; Humans; *Light; Male; Melatonin/*blood/genetics; *Minisatellite Repeats; Period Circadian Proteins/*genetics; *Polymorphism, Genetic; Questionnaires; Sleep/genetics; Wakefulness/*genetics
Abstract CONTEXT: Light exposure, particularly at the short-wavelength range, triggers several nonvisual responses in humans. However, the extent to which the melatonin-suppressing and alerting effect of light differs among individuals remains unknown. OBJECTIVE: Here we investigated whether blue-enriched polychromatic light impacts differentially on melatonin and subjective and objective alertness in healthy participants genotyped for the PERIOD3 (PER3) variable-number, tandem-repeat polymorphism. DESIGN, SETTING, AND PARTICIPANTS: Eighteen healthy young men homozygous for the PER3 polymorphism (PER3(5/5)and PER3(4/4)) underwent a balanced crossover design during the winter season, with light exposure to compact fluorescent lamps of 40 lux at 6500 K and at 2500 K during 2 h in the evening. RESULTS: In comparison to light at 2500 K, blue-enriched light at 6500 K induced a significant suppression of the evening rise in endogenous melatonin levels in PER3(5/5) individuals but not in PER3(4/4). Likewise, PER3(5/5) individuals exhibited a more pronounced alerting response to light at 6500 K than PER3(4/4) volunteers. Waking electroencephalographic activity in the theta range (5-7 Hz), a putative correlate of sleepiness, was drastically attenuated during light exposure at 6500 K in PER3(5/5) individuals as compared with PER3(4/4). CONCLUSIONS: We provide first evidence that humans homozygous for the PER3 5/5 allele are particularly sensitive to blue-enriched light, as indexed by the suppression of endogenous melatonin and waking theta activity. Light sensitivity in humans may be modulated by a clock gene polymorphism implicated in the sleep-wake regulation.
Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstrasse 27, CH-4012 Basel, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes (up) PMID:22188742 Approved no
Call Number IDA @ john @ Serial 301
Permanent link to this record