|   | 
Details
   web
Records
Author Stevens, R.G.
Title Light-at-night, circadian disruption and breast cancer: assessment of existing evidence Type Journal Article
Year 2009 Publication (up) International Journal of Epidemiology Abbreviated Journal Int J Epidemiol
Volume 38 Issue 4 Pages 963-970
Keywords Human Health; Animals; Blindness/complications/epidemiology; Breast Neoplasms/epidemiology/*etiology/metabolism; Chronobiology Disorders/*complications/epidemiology/metabolism; Circadian Rhythm/physiology; Disease Models, Animal; Female; Humans; Light Signal Transduction/physiology; Lighting/adverse effects; Melatonin/biosynthesis; Sleep/physiology; Time Factors; *Work Schedule Tolerance
Abstract BACKGROUND: Breast cancer incidence is increasing globally for largely unknown reasons. The possibility that a portion of the breast cancer burden might be explained by the introduction and increasing use of electricity to light the night was suggested >20 years ago. METHODS: The theory is based on nocturnal light-induced disruption of circadian rhythms, notably reduction of melatonin synthesis. It has formed the basis for a series of predictions including that non-day shift work would increase risk, blind women would be at lower risk, long sleep duration would lower risk and community nighttime light level would co-distribute with breast cancer incidence on the population level. RESULTS: Accumulation of epidemiological evidence has accelerated in recent years, reflected in an International Agency for Research on Cancer (IARC) classification of shift work as a probable human carcinogen (2A). There is also a strong rodent model in support of the light-at-night (LAN) idea. CONCLUSION: If a consensus eventually emerges that LAN does increase risk, then the mechanisms for the effect are important to elucidate for intervention and mitigation. The basic understanding of phototransduction for the circadian system, and of the molecular genetics of circadian rhythm generation are both advancing rapidly, and will provide for the development of lighting technologies at home and at work that minimize circadian disruption, while maintaining visual efficiency and aesthetics. In the interim, there are strategies now available to reduce the potential for circadian disruption, which include extending the daily dark period, appreciate nocturnal awakening in the dark, using dim red light for nighttime necessities, and unless recommended by a physician, not taking melatonin tablets.
Address Department of Community Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-6325, USA. bugs@uchc.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-5771 ISBN Medium
Area Expedition Conference
Notes PMID:19380369; PMCID:PMC2734067 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 527
Permanent link to this record
 

 
Author Bauer, S.E.; Wagner, S.E.; Burch, J.; Bayakly, R.; Vena, J.E.
Title A case-referent study: light at night and breast cancer risk in Georgia Type Journal Article
Year 2013 Publication (up) International Journal of Health Geographics Abbreviated Journal Int J Health Geogr
Volume 12 Issue Pages 23
Keywords Human Health; Aged; Aged, 80 and over; Breast Neoplasms/*diagnosis/*epidemiology; Case-Control Studies; Circadian Rhythm/*physiology; Female; Georgia/epidemiology; Humans; Lighting/*adverse effects; Lung Neoplasms/diagnosis/epidemiology; Middle Aged; Registries; Risk Factors
Abstract BACKGROUND: Literature has identified detrimental health effects from the indiscriminate use of artificial nighttime light. We examined the co-distribution of light at night (LAN) and breast cancer (BC) incidence in Georgia, with the goal to contribute to the accumulating evidence that exposure to LAN increases risk of BC. METHODS: Using Georgia Comprehensive Cancer Registry data (2000-2007), we conducted a case-referent study among 34,053 BC cases and 14,458 lung cancer referents. Individuals with lung cancer were used as referents to control for other cancer risk factors that may be associated with elevated LAN, such as air pollution, and since this cancer type was not previously associated with LAN or circadian rhythm disruption. DMSP-OLS Nighttime Light Time Series satellite images (1992-2007) were used to estimate LAN levels; low (0-20 watts per sterradian cm(2)), medium (21-41 watts per sterradian cm(2)), high (>41 watts per sterradian cm(2)). LAN levels were extracted for each year of exposure prior to case/referent diagnosis in ArcGIS. RESULTS: Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression models controlling for individual-level year of diagnosis, race, age at diagnosis, tumor grade, stage; and population-level determinants including metropolitan statistical area (MSA) status, births per 1,000 women aged 15-50, percentage of female smokers, MSA population mobility, and percentage of population over 16 in the labor force. We found that overall BC incidence was associated with high LAN exposure (OR = 1.12, 95% CI [1.04, 1.20]). When stratified by race, LAN exposure was associated with increased BC risk among whites (OR = 1.13, 95% CI [1.05, 1.22]), but not among blacks (OR = 1.02, 95% CI [0.82, 1.28]). CONCLUSIONS: Our results suggest positive associations between LAN and BC incidence, especially among whites. The consistency of our findings with previous studies suggests that there could be fundamental biological links between exposure to artificial LAN and increased BC incidence, although additional research using exposure metrics at the individual level is required to confirm or refute these findings.
Address Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA. secbauer@ufl.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-072X ISBN Medium
Area Expedition Conference
Notes PMID:23594790; PMCID:PMC3651306 Approved no
Call Number LoNNe @ kagoburian @ Serial 718
Permanent link to this record
 

 
Author Obayashi, K.; Saeki, K.; Iwamoto, J.; Ikada, Y.; Kurumatani, N.
Title Exposure to light at night and risk of depression in the elderly Type Journal Article
Year 2013 Publication (up) Journal of Affective Disorders Abbreviated Journal J Affect Disord
Volume 151 Issue 1 Pages 331-336
Keywords Aged; Circadian Rhythm; Cross-Sectional Studies; Depression/*etiology; Female; Humans; Light/*adverse effects; Male; Melatonin/urine; Psychiatric Status Rating Scales; Risk Factors; Circadian rhythm; Daytime light; Depression; Elderly; Light at night; Melatonin; Mental Health
Abstract BACKGROUND: Recent advances in understanding the fundamental links between chronobiology and depressive disorders have enabled exploring novel risk factors for depression in the field of biological rhythms. Increased exposure to light at night (LAN) is common in modern life, and LAN exposure is associated with circadian misalignment. However, whether LAN exposure in home settings is associated with depression remains unclear. METHODS: We measured the intensities of nighttime bedroom light and ambulatory daytime light along with overnight urinary melatonin excretion (UME) in 516 elderly individuals (mean age, 72.8). Depressive symptoms were assessed using the Geriatric Depression Scale. RESULTS: The median nighttime light intensity was 0.8lx (interquartile range, 0.2-3.3). The depressed group (n=101) revealed significantly higher prevalence of LAN exposure (average intensity, >/= 5 lx) compared with that of the nondepressed group (n=415) using a multivariate logistic regression model adjusted for daytime light exposure, insomnia, hypertension, sleep duration, and physical activity [adjusted odds ratio (OR): 1.89; 95% confidence interval (CI), 1.10-3.25; P=0.02]. Consistently, another parameter of LAN exposure (duration of intensity >/= 10 lx, >/= 30 min) was significantly more prevalent in the depressed than in the nondepressed group (adjusted OR: 1.71; 95% CI, 1.01-2.89; P=0.046). In contrast, UME was not significantly associated with depressive symptoms. LIMITATION: Cross-sectional analysis. CONCLUSION: These results suggested that LAN exposure in home settings is significantly associated with depressive symptoms in the general elderly population. The risk of depression may be reduced by keeping nighttime bedroom dark.
Address Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan. obayashi@naramed-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0327 ISBN Medium
Area Expedition Conference
Notes PMID:23856285 Approved no
Call Number IDA @ john @ Serial 165
Permanent link to this record
 

 
Author Cajochen, C.; Frey, S.; Anders, D.; Spati, J.; Bues, M.; Pross, A.; Mager, R.; Wirz-Justice, A.; Stefani, O.
Title Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance Type Journal Article
Year 2011 Publication (up) Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol (1985)
Volume 110 Issue 5 Pages 1432-1438
Keywords Adult; Circadian Rhythm/*physiology/radiation effects; Cognition/*physiology/radiation effects; *Computer Terminals; Humans; Light; Lighting/*methods; Male; Photic Stimulation/*methods; Radiation Dosage; Semiconductors; *Task Performance and Analysis; Young Adult; blue light; sleep; circadian disruption
Abstract Many people spend an increasing amount of time in front of computer screens equipped with light-emitting diodes (LED) with a short wavelength (blue range). Thus we investigated the repercussions on melatonin (a marker of the circadian clock), alertness, and cognitive performance levels in 13 young male volunteers under controlled laboratory conditions in a balanced crossover design. A 5-h evening exposure to a white LED-backlit screen with more than twice as much 464 nm light emission {irradiance of 0,241 Watt/(steradian x m(2)) [W/(sr x m(2))], 2.1 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm} than a white non-LED-backlit screen [irradiance of 0,099 W/(sr x m(2)), 0.7 x 10(13) photons/(cm(2) x s), in the wavelength range of 454 and 474 nm] elicited a significant suppression of the evening rise in endogenous melatonin and subjective as well as objective sleepiness, as indexed by a reduced incidence of slow eye movements and EEG low-frequency activity (1-7 Hz) in frontal brain regions. Concomitantly, sustained attention, as determined by the GO/NOGO task; working memory/attention, as assessed by “explicit timing”; and declarative memory performance in a word-learning paradigm were significantly enhanced in the LED-backlit screen compared with the non-LED condition. Screen quality and visual comfort were rated the same in both screen conditions, whereas the non-LED screen tended to be considered brighter. Our data indicate that the spectral profile of light emitted by computer screens impacts on circadian physiology, alertness, and cognitive performance levels. The challenge will be to design a computer screen with a spectral profile that can be individually programmed to add timed, essential light information to the circadian system in humans.
Address Centre for Chronobiology, Psychiatric Hospitals of the University of Basel, Basel, Switzerland. christian.cajochen@upkbs.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-7567 ISBN Medium
Area Expedition Conference
Notes PMID:21415172 Approved no
Call Number IDA @ john @ Serial 293
Permanent link to this record
 

 
Author Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
Year 2013 Publication (up) Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 28 Issue 4 Pages 262-271
Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity
Abstract With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:23929553; PMCID:PMC4033305 Approved no
Call Number IDA @ john @ Serial 28
Permanent link to this record