toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Evans, J.A.; Elliott, J.A.; Gorman, M.R. url  doi
openurl 
  Title Circadian effects of light no brighter than moonlight Type Journal Article
  Year 2007 Publication (up) Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 22 Issue 4 Pages 356-367  
  Keywords Animals; Biological Clocks/physiology/*radiation effects; *Circadian Rhythm; Cricetinae; Dose-Response Relationship, Radiation; Lighting/*methods; Male; Mesocricetus; Motor Activity; Oscillometry; Photic Stimulation/methods; *Photoperiod; Physical Conditioning, Animal; Time Factors  
  Abstract In mammals, light entrains endogenous circadian pacemakers by inducing daily phase shifts via a photoreceptor mechanism recently discovered in retinal ganglion cells. Light that is comparable in intensity to moonlight is generally ineffective at inducing phase shifts or suppressing melatonin secretion, which has prompted the view that circadian photic sensitivity has been titrated so that the central pacemaker is unaffected by natural nighttime illumination. However, the authors have shown in several different entrainment paradigms that completely dark nights are not functionally equivalent to dimly lit nights, even when nighttime illumination is below putative thresholds for the circadian visual system. The present studies extend these findings. Dim illumination is shown here to be neither a strong zeitgeber, consistent with published fluence response curves, nor a potentiator of other zeitgebers. Nevertheless, dim light markedly alters the behavior of the free-running circadian pacemaker. Syrian hamsters were released from entrained conditions into constant darkness or dim narrowband green illumination (~0.01 lx, 1.3 x 10(-9) W/cm(2), peak lambda = 560 nm). Relative to complete darkness, constant dim light lengthened the period by ~0.3 h and altered the waveform of circadian rhythmicity. Among animals transferred from long day lengths (14 L:10 D) into constant conditions, dim illumination increased the duration of the active phase (alpha) by ~3 h relative to complete darkness. Short day entrainment (8 L:16 D) produced initially long alpha that increased further under constant dim light but decreased under complete darkness. In contrast, dim light pulses 2 h or longer produced effects on circadian phase and melatonin secretion that were small in magnitude. Furthermore, the amplitude of phase resetting to bright light and nonphotic stimuli was similar against dimly lit and dark backgrounds, indicating that the former does not directly amplify circadian inputs. Dim illumination markedly alters circadian waveform through effects on alpha, suggesting that dim light influences the coupling between oscillators theorized to program the beginning and end of subjective night. Physiological mechanisms responsible for conveying dim light stimuli to the pacemaker and implications for chronotherapeutics warrant further study.  
  Address Department of Psychology, University of California, San Diego, La Jolla, CA 92093, usa. jaevans@ucsd.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17660452 Approved no  
  Call Number IDA @ john @ Serial 31  
Permanent link to this record
 

 
Author Fonken, L.K.; Kitsmiller, E.; Smale, L.; Nelson, R.J. url  doi
openurl 
  Title Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent Type Journal Article
  Year 2012 Publication (up) Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 27 Issue 4 Pages 319-327  
  Keywords Analysis of Variance; Animals; CA1 Region, Hippocampal/cytology; CA3 Region, Hippocampal/cytology; Circadian Rhythm/*physiology; Cognition/*physiology/radiation effects; Corticosterone/blood; Dendrites/physiology/radiation effects; Dentate Gyrus/cytology; Depressive Disorder/*physiopathology; Food Preferences/physiology/radiation effects; Light; Male; Maze Learning/physiology/radiation effects; Motor Activity/physiology/radiation effects; Murinae/*physiology; Neurons/drug effects/physiology; *Photoperiod; Swimming/physiology  
  Abstract Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.  
  Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA. fonken.1@osu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22855576 Approved no  
  Call Number IDA @ john @ Serial 91  
Permanent link to this record
 

 
Author Brainard, G.C.; Sliney, D.; Hanifin, J.P.; Glickman, G.; Byrne, B.; Greeson, J.M.; Jasser, S.; Gerner, E.; Rollag, M.D. url  doi
openurl 
  Title Sensitivity of the human circadian system to short-wavelength (420-nm) light Type Journal Article
  Year 2008 Publication (up) Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 23 Issue 5 Pages 379-386  
  Keywords Human Health; Adult; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Male; Melatonin/metabolism; Models, Biological; Neurosecretory Systems; Photons; Pineal Gland/metabolism; Retinal Ganglion Cells/*metabolism; Vision, Ocular  
  Abstract The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment melanopsin. Nine action spectrum studies using rodents, monkeys, and humans for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 to 484 nm, with some disagreement in short-wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420-nm light for plasma melatonin suppression. Adult female (n=14) and male (n=12) subjects participated in 2 studies, each employing a within-subjects design. In a fluence-response study, subjects (n=8) were tested with 8 light irradiances at 420 nm ranging over a 4-log unit photon density range of 10(10) to 10(14) photons/cm(2)/sec and 1 dark exposure control night. In the other study, subjects (n=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 10(13) photons/cm(2)/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420-nm light and melatonin suppression (p<0.001) with a half-saturation constant of 2.74 x 10(11) photons/cm(2)/sec. The second study showed that 460-nm light is significantly stronger than 420-nm light for suppressing melatonin (p<0.04). Together, the results clarify the visible short-wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications.  
  Address Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA. george.brainard@jefferson.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18838601 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 724  
Permanent link to this record
 

 
Author Landers, J.A.; Tamblyn, D.; Perriam, D. url  doi
openurl 
  Title Effect of a blue-light-blocking intraocular lens on the quality of sleep Type Journal Article
  Year 2009 Publication (up) Journal of Cataract and Refractive Surgery Abbreviated Journal J Cataract Refract Surg  
  Volume 35 Issue 1 Pages 83-88  
  Keywords Aged; Aged, 80 and over; Circadian Rhythm/physiology; Female; Humans; *Lens Implantation, Intraocular; *Lenses, Intraocular; Light; Male; *Phacoemulsification; Prosthesis Design; Questionnaires; Sleep/*physiology; blue light; sleep  
  Abstract PURPOSE: To evaluate whether implantation of a blue-light-blocking intraocular lens (IOL) affects sleep quality. SETTING: Repatriation General Hospital, Adelaide, Australia. METHODS: This study comprised patients who had bilateral cataract surgery during the preceding 12 months with implantation of a conventional SI40NB IOL or an AcrySof Natural SN60WF blue-light-blocking IOL. Patients were contacted by telephone at least 6 months after second-eye surgery, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire was administered. Results were compared between groups. RESULTS: Of the 49 patients, 31 received conventional IOLs and 18, blue-light-blocking IOLs. The mean age of the patients was 80 years +/- 8.1 (SD). The median PSQI score was 6 (interquartile range 3 to 8). There were no statistically significant differences in PSQI scores between the 2 IOL groups (P = .65). This remained true after adjustment for sex, age, medication, and time since surgery. CONCLUSION: The blue-light-blocking IOL had no effect on the sleep quality of patients, indicating that these IOLs might serve as an alternative to conventional IOLs without a detrimental effect on circadian rhythm.  
  Address Department of Ophthalmology, Repatriation General Hospital, Adelaide, Australia. john.landers@bigpond.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0886-3350 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19101429 Approved no  
  Call Number IDA @ john @ Serial 288  
Permanent link to this record
 

 
Author Schoech, S.J.; Bowman, R.; Hahn, T.P.; Goymann, W.; Schwabl, I.; Bridge, E.S. url  doi
openurl 
  Title The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica) Type Journal Article
  Year 2013 Publication (up) Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology Abbreviated Journal J Exp Zool A Ecol Genet Physiol  
  Volume 319 Issue 9 Pages 527-538  
  Keywords Animals; Corticosterone/blood; Ecosystem; Female; *Light; Male; Melatonin/blood; Passeriformes/*physiology; *Photoperiod; Reproduction/*physiology; Testosterone/blood  
  Abstract Florida scrub-jays (Aphelocoma coerulescens) in the suburbs breed earlier than jays in native habitat. Amongst the possible factors that influence this advance (e.g., food availability, microclimate, predator regime, etc.), is exposure to artificial lights at night (LAN). LAN could stimulate the reproductive axis of the suburban jays. Alternatively, LAN could inhibit pineal melatonin (MEL), thus removing its inhibitory influence on the reproductive axis. Because Florida scrub-jays are a threatened species, we used western scrub-jays (Aphelocoma californica) to investigate the effects of LAN upon reproductive hormones and melatonin. Jays were held under conditions in which the dark-phase of the light:dark cycle was without illumination and then under low levels of LAN. Under both conditions, birds were exposed first to short-days (9.5L:14.5D) that were gradually increased to long-days (14.5L:9.5D). At various times, blood samples were collected during the light part of the cycle to measure reproductive hormones (luteinizing hormone, LH; testosterone, T; and estradiol, E2 ). Similarly, samples to assess melatonin were collected during the dark. In males, LAN caused a depression in LH levels and levels were approximately 4x greater under long- than short-days. In females, there was no effect of LAN or photoperiod upon LH. LAN resulted in depressed T levels in females, although there was no effect on T in males. E2 levels in both sexes were lower under LAN than under an unlighted dark-phase. Paradoxically, MEL was higher in jays under LAN, and under long-days. MEL did not differ by sex. LAN disrupted the extraordinarily strong correlation between T and E2 that existed under unlighted nocturnal conditions. Overall, our findings fail to support the hypothesis that LAN stimulates the reproductive axis. Rather, the data demonstrate that LAN tends to inhibit reproductive hormone secretion, although not in a consistent fashion between the sexes.  
  Address Department of Biological Sciences, University of Memphis, Memphis, Tennessee  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-5223 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23970442 Approved no  
  Call Number IDA @ john @ Serial 37  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: