|   | 
Details
   web
Records
Author Cajochen, C.; Munch, M.; Kobialka, S.; Krauchi, K.; Steiner, R.; Oelhafen, P.; Orgul, S.; Wirz-Justice, A.
Title High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light Type Journal Article
Year 2005 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume 90 Issue 3 Pages 1311-1316
Keywords Human Health; Adult; Body Temperature Regulation/physiology/*radiation effects; Circadian Rhythm/physiology/radiation effects; Color; Heart Rate/physiology/*radiation effects; Humans; *Light; Male; Melatonin/*metabolism; Retinal Cone Photoreceptor Cells/physiology; Sleep Stages/physiology/radiation effects; Wakefulness/physiology/*radiation effects
Abstract Light can elicit acute physiological and alerting responses in humans, the magnitude of which depends on the timing, intensity, and duration of light exposure. Here, we report that the alerting response of light as well as its effects on thermoregulation and heart rate are also wavelength dependent. Exposure to 2 h of monochromatic light at 460 nm in the late evening induced a significantly greater melatonin suppression than occurred with 550-nm monochromatic light, concomitant with a significantly greater alerting response and increased core body temperature and heart rate ( approximately 2.8 x 10(13) photons/cm(2)/sec for each light treatment). Light diminished the distal-proximal skin temperature gradient, a measure of the degree of vasoconstriction, independent of wavelength. Nonclassical ocular photoreceptors with peak sensitivity around 460 nm have been found to regulate circadian rhythm function as measured by melatonin suppression and phase shifting. Our findings-that the sensitivity of the human alerting response to light and its thermoregulatory sequelae are blue-shifted relative to the three-cone visual photopic system-indicate an additional role for these novel photoreceptors in modifying human alertness, thermophysiology, and heart rate.
Address Centre for Chronobiology, Psychiatric University Clinic, Wilhelm Kleinstr. 27, CH-4025 Basel, Switzerland. christian.cajochen@pukbasel.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:15585546 Approved no
Call Number LoNNe @ kagoburian @ Serial (down) 728
Permanent link to this record
 

 
Author Cajochen, C.; Jud, C.; Munch, M.; Kobialka, S.; Wirz-Justice, A.; Albrecht, U.
Title Evening exposure to blue light stimulates the expression of the clock gene PER2 in humans Type Journal Article
Year 2006 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume 23 Issue 4 Pages 1082-1086
Keywords Human Health; Adult; Color; Darkness; Dose-Response Relationship, Radiation; Female; Gene Expression/*radiation effects; Humans; *Light; Male; Melatonin/metabolism; Mucous Membrane/metabolism/radiation effects; Nuclear Proteins/genetics/*metabolism; Period Circadian Proteins; Transcription Factors/genetics/*metabolism
Abstract We developed a non-invasive method to measure and quantify human circadian PER2 gene expression in oral mucosa samples and show that this gene oscillates in a circadian (= about a day) fashion. We also have the first evidence that induction of human PER2 expression is stimulated by exposing subjects to 2 h of light in the evening. This increase in PER2 expression was statistically significant in comparison to a non-light control condition only after light at 460 nm (blue) but not after light exposure at 550 nm (green). Our results indicate that the non-image-forming visual system is involved in human circadian gene expression. The demonstration of a functional circadian machinery in human buccal samples and its response to light opens the door for investigation of human circadian rhythms at the gene level and their associated disorders.
Address Centre for Chronobiology, Psychiatric University Clinics, University of Basel, CH-4025 Basel, Switzerland. christian.cajochen@unibas.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:16519674 Approved no
Call Number LoNNe @ kagoburian @ Serial (down) 727
Permanent link to this record
 

 
Author Bullough, J.D.; Rea, M.S.; Figueiro, M.G.
Title Of mice and women: light as a circadian stimulus in breast cancer research Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue 4 Pages 375-383
Keywords Human Health; Animals; Breast Neoplasms/*physiopathology; *Circadian Rhythm; *Disease Models, Animal; Female; Humans; *Light; Light Signal Transduction; Mammary Neoplasms, Animal/*physiopathology; Melatonin/metabolism; Mice; Muridae/metabolism
Abstract OBJECTIVE: Nocturnal rodents are frequently used as models in human breast cancer research, but these species have very different visual and circadian systems and, therefore, very different responses to optical radiation or, informally, light. Because of the impact of light on the circadian system and because recent evidence suggests that cancer risk might be related to circadian disruption, it is becoming increasingly clear that optical radiation must be properly characterized for both nocturnal rodents and diurnal humans to make significant progress in unraveling links between circadian disruption and breast cancer. In this paper, we propose a quantitative framework for comparing radiometric and photometric quantities in human and rodent studies. METHODS: We reviewed published research on light as a circadian stimulus for humans and rodents. Both suppression of nocturnal melatonin and phase shifting were examined as outcome measures for the circadian system. RESULTS: The data were used to develop quantitative comparisons regarding the absolute and spectral sensitivity for the circadian systems of humans and nocturnal rodents. CONCLUSIONS: Two models of circadian phototransduction, for mouse and humans, have been published providing spectral sensitivities for these two species. Despite some methodological variations among the studies reviewed, the circadian systems of nocturnal rodents are approximately 10,000 times more sensitive to optical radiation than that of humans. Circadian effectiveness of different sources for both humans and nocturnal rodents are offered together with a scale relating their absolute sensitivities. Instruments calibrated in terms of conventional photometric units (e.g., lux) will not accurately characterize the circadian stimulus for either humans or rodents.
Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA. bulloj@rpi.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes PMID:16596289 Approved no
Call Number LoNNe @ kagoburian @ Serial (down) 726
Permanent link to this record
 

 
Author Brainard, G.C.; Sliney, D.; Hanifin, J.P.; Glickman, G.; Byrne, B.; Greeson, J.M.; Jasser, S.; Gerner, E.; Rollag, M.D.
Title Sensitivity of the human circadian system to short-wavelength (420-nm) light Type Journal Article
Year 2008 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 23 Issue 5 Pages 379-386
Keywords Human Health; Adult; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Male; Melatonin/metabolism; Models, Biological; Neurosecretory Systems; Photons; Pineal Gland/metabolism; Retinal Ganglion Cells/*metabolism; Vision, Ocular
Abstract The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment melanopsin. Nine action spectrum studies using rodents, monkeys, and humans for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 to 484 nm, with some disagreement in short-wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420-nm light for plasma melatonin suppression. Adult female (n=14) and male (n=12) subjects participated in 2 studies, each employing a within-subjects design. In a fluence-response study, subjects (n=8) were tested with 8 light irradiances at 420 nm ranging over a 4-log unit photon density range of 10(10) to 10(14) photons/cm(2)/sec and 1 dark exposure control night. In the other study, subjects (n=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 10(13) photons/cm(2)/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420-nm light and melatonin suppression (p<0.001) with a half-saturation constant of 2.74 x 10(11) photons/cm(2)/sec. The second study showed that 460-nm light is significantly stronger than 420-nm light for suppressing melatonin (p<0.04). Together, the results clarify the visible short-wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications.
Address Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA. george.brainard@jefferson.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:18838601 Approved no
Call Number LoNNe @ kagoburian @ Serial (down) 724
Permanent link to this record
 

 
Author Boivin, D.B.; Duffy, J.F.; Kronauer, R.E.; Czeisler, C.A.
Title Dose-response relationships for resetting of human circadian clock by light Type Journal Article
Year 1996 Publication Nature Abbreviated Journal Nature
Volume 379 Issue 6565 Pages 540-542
Keywords Human Health; Adult; Body Temperature; Circadian Rhythm/*radiation effects; Dose-Response Relationship, Radiation; Humans; *Light; Male; NASA Discipline Number 18-10; NASA Discipline Regulatory Physiology; NASA Program Space Physiology and Countermeasures; Non-NASA Center
Abstract Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.
Address Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:8596632 Approved no
Call Number LoNNe @ kagoburian @ Serial (down) 722
Permanent link to this record