toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hansen, J.; Lassen, C.F. url  doi
openurl 
  Title (down) Nested case-control study of night shift work and breast cancer risk among women in the Danish military Type Journal Article
  Year 2012 Publication Occupational and Environmental Medicine Abbreviated Journal Occup Environ Med  
  Volume 69 Issue 8 Pages 551-556  
  Keywords Adult; Aged; Aged, 80 and over; Breast Neoplasms/*etiology; Case-Control Studies; *Circadian Rhythm; Denmark/epidemiology; Female; Humans; Logistic Models; Middle Aged; Military Personnel; *Occupations; Odds Ratio; Risk Factors; *Sunlight; *Work; *Work Schedule Tolerance; oncogenesis  
  Abstract OBJECTIVES: Growing but limited evidence suggests that night shift work is associated with breast cancer. The authors conducted a nationwide case-control study nested within a cohort of 18,551 female military employees born in 1929-1968 to investigate the risk for breast cancer after night shift work and to explore the role of leisure time sun exposure and diurnal preference. METHODS: The authors documented 218 cases of breast cancer (1990-2003) and selected 899 age-matched controls from the cohort by incidence density sampling. Information on shift work, sun exposure habits, diurnal preference and other potential confounders was obtained from a structured questionnaire. ORs were estimated by multivariate conditional logistic regression. RESULTS: Overall, the authors observed an adjusted OR of 1.4 (95% CI 0.9 to 2.1) among women with ever compared with never night shifts. The RR for breast cancer tended to increase with increasing number of years of night shift work (p=0.03) and with cumulative number of shifts (p=0.02),with a neutral risk for fewer than three night shifts per week. The OR for the group with the highest tertile of cumulative exposure was 2.3 (95% CI 1.2 to 4.6). The most pronounced effect of night shift work on breast cancer risk was observed in women with morning chronotype preference and intense night shifts (OR=3.9, 95% CI 1.6 to 9.5). Night shift workers tended to sunbathe more frequently than day workers. CONCLUSIONS: The results indicate that frequent night shift work increases the risk for breast cancer and suggest a higher risk with longer duration of intense night shifts. Women with morning preference who worked on night shifts tended to have a higher risk than those with evening preference.  
  Address Institute of Cancer Epidemiology, Danish Cancer Society, Strandboulevarden 49, Copenhagen DK2100, Denmark. johnni@cancer.dk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1351-0711 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22645325 Approved no  
  Call Number IDA @ john @ Serial 156  
Permanent link to this record
 

 
Author Blask, D.E.; Brainard, G.C.; Dauchy, R.T.; Hanifin, J.P.; Davidson, L.K.; Krause, J.A.; Sauer, L.A.; Rivera-Bermudez, M.A.; Dubocovich, M.L.; Jasser, S.A.; Lynch, D.T.; Rollag, M.D.; Zalatan, F. url  doi
openurl 
  Title (down) Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats Type Journal Article
  Year 2005 Publication Cancer Research Abbreviated Journal Cancer Res  
  Volume 65 Issue 23 Pages 11174-11184  
  Keywords Human Health; Animals; Breast Neoplasms/*blood/genetics/pathology; Cell Growth Processes/physiology; Circadian Rhythm/*physiology; Female; Humans; Light; Liver Neoplasms, Experimental/metabolism; Male; Melatonin/blood/*deficiency; Premenopause/blood; RNA, Messenger/biosynthesis/genetics; Rats; Rats, Nude; Receptors, Melatonin/biosynthesis/genetics; Transplantation, Heterologous  
  Abstract The increased breast cancer risk in female night shift workers has been postulated to result from the suppression of pineal melatonin production by exposure to light at night. Exposure of rats bearing rat hepatomas or human breast cancer xenografts to increasing intensities of white fluorescent light during each 12-hour dark phase (0-345 microW/cm2) resulted in a dose-dependent suppression of nocturnal melatonin blood levels and a stimulation of tumor growth and linoleic acid uptake/metabolism to the mitogenic molecule 13-hydroxyoctadecadienoic acid. Venous blood samples were collected from healthy, premenopausal female volunteers during either the daytime, nighttime, or nighttime following 90 minutes of ocular bright, white fluorescent light exposure at 580 microW/cm2 (i.e., 2,800 lx). Compared with tumors perfused with daytime-collected melatonin-deficient blood, human breast cancer xenografts and rat hepatomas perfused in situ, with nocturnal, physiologically melatonin-rich blood collected during the night, exhibited markedly suppressed proliferative activity and linoleic acid uptake/metabolism. Tumors perfused with melatonin-deficient blood collected following ocular exposure to light at night exhibited the daytime pattern of high tumor proliferative activity. These results are the first to show that the tumor growth response to exposure to light during darkness is intensity dependent and that the human nocturnal, circadian melatonin signal not only inhibits human breast cancer growth but that this effect is extinguished by short-term ocular exposure to bright, white light at night. These mechanistic studies are the first to provide a rational biological explanation for the increased breast cancer risk in female night shift workers.  
  Address Laboratory of Chrono-Neuroendocrine Oncology, Bassett Research Institute, The Mary Imogene Bassett Hospital, Cooperstown, New York 13326, USA. david.blask@bassett.org  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-5472 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16322268 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 721  
Permanent link to this record
 

 
Author Srinivasan, V.; Spence, D.W.; Pandi-Perumal, S.R.; Trakht, I.; Esquifino, A.I.; Cardinali, D.P.; Maestroni, G.J. url  doi
openurl 
  Title (down) Melatonin, environmental light, and breast cancer Type Journal Article
  Year 2008 Publication Breast Cancer Research and Treatment Abbreviated Journal Breast Cancer Res Treat  
  Volume 108 Issue 3 Pages 339-350  
  Keywords Human Health; Breast Neoplasms/*etiology/*physiopathology; Circadian Rhythm/physiology; Female; Humans; Light; Lighting/*adverse effects; Melatonin/*physiology; Occupational Exposure/adverse effects  
  Abstract Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) alpha-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.  
  Address Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6806 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17541739 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 815  
Permanent link to this record
 

 
Author Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Rosales-Corral, S.A. url  doi
openurl 
  Title (down) Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology Type Journal Article
  Year 2014 Publication Human Reproduction Update Abbreviated Journal Hum Reprod Update  
  Volume 20 Issue 2 Pages 293-307  
  Keywords Human Health; Animals; Antioxidants/physiology; Biological Clocks/physiology; Circadian Rhythm/*physiology; Female; Fetus/*physiology; Humans; Mammals; Melatonin/biosynthesis/*physiology; Mice; Oxidative Stress/physiology; Parturition/physiology; Placenta/metabolism/*physiology; Pre-Eclampsia/etiology/metabolism; Pregnancy; Uterus/metabolism; circadian rhythms; fetus; melatonin; placenta; pre-eclampsia  
  Abstract BACKGROUND: Research within the last decade has shown melatonin to have previously-unsuspected beneficial actions on the peripheral reproductive organs. Likewise, numerous investigations have documented that stable circadian rhythms are also helpful in maintaining reproductive health. The relationship of melatonin and circadian rhythmicity to maternal and fetal health is summarized in this review. METHODS: Databases were searched for the related published English literature up to 15 May 2013. The search terms used in various combinations included melatonin, circadian rhythms, biological clock, suprachiasmatic nucleus, ovary, pregnancy, uterus, placenta, fetus, pre-eclampsia, intrauterine growth restriction, ischemia-reperfusion, chronodisruption, antioxidants, oxidative stress and free radicals. The results of the studies uncovered are summarized herein. RESULTS: Both melatonin and circadian rhythms impact reproduction, especially during pregnancy. Melatonin is a multifaceted molecule with direct free radical scavenging and indirect antioxidant activities. Melatonin is produced in both the ovary and in the placenta where it protects against molecular mutilation and cellular dysfunction arising from oxidative/nitrosative stress. The placenta, in particular, is often a site of excessive free radical generation due to less than optimal adhesion to the uterine wall, which leads to either persistent hypoxia or intermittent hypoxia and reoxygenation, processes that cause massive free radical generation and organ dysfunction. This may contribute to pre-eclampsia and other disorders which often complicate pregnancy. Melatonin has ameliorated free radical damage to the placenta and to the fetus in experiments using non-human mammals. Likewise, the maintenance of a regular maternal light/dark and sleep/wake cycle is important to stabilize circadian rhythms generated by the maternal central circadian pacemaker, the suprachiasmatic nuclei. Optimal circadian rhythmicity in the mother is important since her circadian clock, either directly or indirectly via the melatonin rhythm, programs the developing master oscillator of the fetus. Experimental studies have shown that disturbed maternal circadian rhythms, referred to as chronodisruption, and perturbed melatonin cycles have negative consequences for the maturing fetal oscillators, which may lead to psychological and behavioral problems in the newborn. To optimize regular circadian rhythms and prevent disturbances of the melatonin cycle during pregnancy, shift work and bright light exposure at night should be avoided, especially during the last trimester of pregnancy. Finally, melatonin synergizes with oxytocin to promote delivery of the fetus. Since blood melatonin levels are normally highest during the dark period, the propensity of childbirth to occur at night may relate to the high levels of melatonin at this time which work in concert with oxytocin to enhance the strength of uterine contractions. CONCLUSIONS: A number of conclusions naturally evolve from the data summarized in this review: (i) melatonin, of both pineal and placental origin, has essential functions in fetal maturation and placenta/uterine homeostasis; (ii) circadian clock genes, which are components of all cells including those in the peripheral reproductive organs, have important roles in reproductive and organismal (fetal and maternal) physiology; (iii) due to the potent antioxidant actions of melatonin, coupled with its virtual absence of toxicity, this indoleamine may have utility in the treatment of pre-eclampsia, intrauterine growth restriction, placental and fetal ischemia/reperfusion, etc. (iv) the propensity for parturition to occur at night may relate to the synergism between the nocturnal increase in melatonin and oxytocin.  
  Address Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1355-4786 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24132226 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 504  
Permanent link to this record
 

 
Author Wood, J.M.; Tyrrell, R.A.; Carberry, T.P. url  doi
openurl 
  Title (down) Limitations in drivers' ability to recognize pedestrians at night Type Journal Article
  Year 2005 Publication Human Factors Abbreviated Journal Hum Factors  
  Volume 47 Issue 3 Pages 644-653  
  Keywords Vision; Public Safety; Adult; Age Factors; Aged; *Automobile Driving/psychology; Clothing; *Darkness; Female; Humans; Male; Middle Aged; Reaction Time; Task Performance and Analysis; Visual Perception  
  Abstract This study quantified drivers' ability to recognize pedestrians at night. Ten young and 10 older participants drove around a closed road circuit and responded when they first recognized a pedestrian. Four pedestrian clothing and two beam conditions were tested. Results demonstrate that driver age, clothing configuration, headlamp beam, and glare all significantly affect performance. Drivers recognized only 5% of pedestrians in the most challenging condition (low beams, black clothing, glare), whereas drivers recognized 100% of the pedestrians who wore retroreflective clothing configured to depict biological motion (no glare). In the absence of glare, mean recognition distances varied from 0.0 m (older drivers, low beam, black clothing) to 220 m (722 feet; younger drivers, high beam, retroreflective biomotion). These data provide new motivation to minimize interactions between vehicular and pedestrian traffic at night and suggest garment designs to maximize pedestrian conspicuity when these interactions are unavoidable.  
  Address Center for Eye Research, Queensland University of Technology, Brisbane, Australia. j.wood@qut.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-7208 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16435703 Approved no  
  Call Number GFZ @ kyba @ Serial 2804  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: