|   | 
Details
   web
Records
Author Bauer, S.E.; Wagner, S.E.; Burch, J.; Bayakly, R.; Vena, J.E.
Title (up) A case-referent study: light at night and breast cancer risk in Georgia Type Journal Article
Year 2013 Publication International Journal of Health Geographics Abbreviated Journal Int J Health Geogr
Volume 12 Issue Pages 23
Keywords Human Health; Aged; Aged, 80 and over; Breast Neoplasms/*diagnosis/*epidemiology; Case-Control Studies; Circadian Rhythm/*physiology; Female; Georgia/epidemiology; Humans; Lighting/*adverse effects; Lung Neoplasms/diagnosis/epidemiology; Middle Aged; Registries; Risk Factors
Abstract BACKGROUND: Literature has identified detrimental health effects from the indiscriminate use of artificial nighttime light. We examined the co-distribution of light at night (LAN) and breast cancer (BC) incidence in Georgia, with the goal to contribute to the accumulating evidence that exposure to LAN increases risk of BC. METHODS: Using Georgia Comprehensive Cancer Registry data (2000-2007), we conducted a case-referent study among 34,053 BC cases and 14,458 lung cancer referents. Individuals with lung cancer were used as referents to control for other cancer risk factors that may be associated with elevated LAN, such as air pollution, and since this cancer type was not previously associated with LAN or circadian rhythm disruption. DMSP-OLS Nighttime Light Time Series satellite images (1992-2007) were used to estimate LAN levels; low (0-20 watts per sterradian cm(2)), medium (21-41 watts per sterradian cm(2)), high (>41 watts per sterradian cm(2)). LAN levels were extracted for each year of exposure prior to case/referent diagnosis in ArcGIS. RESULTS: Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression models controlling for individual-level year of diagnosis, race, age at diagnosis, tumor grade, stage; and population-level determinants including metropolitan statistical area (MSA) status, births per 1,000 women aged 15-50, percentage of female smokers, MSA population mobility, and percentage of population over 16 in the labor force. We found that overall BC incidence was associated with high LAN exposure (OR = 1.12, 95% CI [1.04, 1.20]). When stratified by race, LAN exposure was associated with increased BC risk among whites (OR = 1.13, 95% CI [1.05, 1.22]), but not among blacks (OR = 1.02, 95% CI [0.82, 1.28]). CONCLUSIONS: Our results suggest positive associations between LAN and BC incidence, especially among whites. The consistency of our findings with previous studies suggests that there could be fundamental biological links between exposure to artificial LAN and increased BC incidence, although additional research using exposure metrics at the individual level is required to confirm or refute these findings.
Address Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA. secbauer@ufl.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-072X ISBN Medium
Area Expedition Conference
Notes PMID:23594790; PMCID:PMC3651306 Approved no
Call Number LoNNe @ kagoburian @ Serial 718
Permanent link to this record
 

 
Author LeGates, T.A.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S.
Title (up) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons Type Journal Article
Year 2012 Publication Nature Abbreviated Journal Nature
Volume 491 Issue 7425 Pages 594-598
Keywords Affect/drug effects/physiology/*radiation effects; Animals; Antidepressive Agents/pharmacology; Body Temperature Regulation/physiology/radiation effects; Circadian Rhythm/physiology; Cognition/drug effects/physiology/radiation effects; Corticosterone/metabolism; Depression/etiology/physiopathology; Desipramine/pharmacology; Fluoxetine/pharmacology; Learning/drug effects/physiology/*radiation effects; *Light; Long-Term Potentiation/drug effects; Male; Memory/physiology/radiation effects; Mice; Photoperiod; Retinal Ganglion Cells/drug effects/*metabolism/*radiation effects; *Rod Opsins/analysis; Sleep/physiology; Wakefulness/physiology
Abstract The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.
Address Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:23151476; PMCID:PMC3549331 Approved no
Call Number IDA @ john @ Serial 238
Permanent link to this record
 

 
Author Titulaer, M.; Spoelstra, K.; Lange, C.Y.M.J.G.; Visser, M.E.
Title (up) Activity patterns during food provisioning are affected by artificial light in free living great tits (Parus major) Type Journal Article
Year 2012 Publication PloS one Abbreviated Journal PLoS One
Volume 7 Issue 5 Pages e37377
Keywords Animals; Appetitive Behavior/*physiology; Feeding Behavior/*physiology; Female; Light/*adverse effects; Male; Nesting Behavior/*physiology; Netherlands; Passeriformes/*physiology; Photoperiod; Sex Factors
Abstract Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.
Address Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:22624023; PMCID:PMC3356403 Approved no
Call Number IDA @ john @ Serial 45
Permanent link to this record
 

 
Author Titulaer, M.; Spoelstra, K.; Lange, C.Y.M.J.G.; Visser, M.E.
Title (up) Activity patterns during food provisioning are affected by artificial light in free living great tits (Parus major) Type Journal Article
Year 2012 Publication PloS one Abbreviated Journal PLoS One
Volume 7 Issue 5 Pages e37377
Keywords Animals; Appetitive Behavior/*physiology; Feeding Behavior/*physiology; Female; Light/*adverse effects; Male; Nesting Behavior/*physiology; Netherlands; Passeriformes/*physiology; Photoperiod; Sex Factors
Abstract Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.
Address Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:22624023; PMCID:PMC3356403 Approved no
Call Number LoNNe @ kagoburian @ Serial 840
Permanent link to this record
 

 
Author Dominoni, D.; Quetting, M.; Partecke, J.
Title (up) Artificial light at night advances avian reproductive physiology Type Journal Article
Year 2013 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 280 Issue 1756 Pages 20123017
Keywords Animals; *Lighting; Male; Molting; Photoperiod; Reproduction/*physiology; Singing; Songbirds/*physiology; Testis/anatomy & histology; Testosterone/blood; Trees
Abstract Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution.
Address Department of Migration and Immuno-ecology, Max Planck Institute for Ornithology, Radolfzell 78315, Germany. ddominoni@orn.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:23407836; PMCID:PMC3574380 Approved no
Call Number IDA @ john @ Serial 50
Permanent link to this record