|   | 
Details
   web
Records
Author Knutsson, A.; Alfredsson, L.; Karlsson, B.; Akerstedt, T.; Fransson, E.I.; Westerholm, P.; Westerlund, H.
Title (up) Breast cancer among shift workers: results of the WOLF longitudinal cohort study Type Journal Article
Year 2013 Publication Scandinavian Journal of Work, Environment & Health Abbreviated Journal Scand J Work Environ Health
Volume 39 Issue 2 Pages 170-177
Keywords Adult; Aged; Breast Neoplasms/*epidemiology/etiology; Circadian Rhythm; Female; Humans; Incidence; Longitudinal Studies; Middle Aged; Proportional Hazards Models; Risk Assessment; Sweden/epidemiology; *Work Schedule Tolerance; oncogenesis
Abstract OBJECTIVE: The aim of this study was to investigate whether shift work (with or without night work) is associated with increased risk of breast cancer. METHODS: The population consisted of 4036 women. Data were obtained from WOLF (Work, Lipids, and Fibrinogen), a longitudinal cohort study. Information about baseline characteristics was based on questionnaire responses and medical examination. Cancer incidence from baseline to follow-up was obtained from the national cancer registry. Two exposure groups were identified: shift work with and without night work. The group with day work only was used as the reference group in the analysis. Cox regression analysis was used to calculate relative risk. RESULTS: In total, 94 women developed breast cancer during follow-up. The average follow-up time was 12.4 years. The hazard ratio for breast cancer was 1.23 [95% confidence interval (95% CI) 0.70-2.17] for shifts without night work and 2.02 (95% CI 1.03-3.95) for shifts with night work. When including only women <60 years of age, the risk estimates were 1.18 (95% CI 0.67-2.07) for shifts without night work, and 2.15 (95% CI 1.10-4.21) for shifts with night work. CONCLUSIONS: Our results indicate an increased risk for breast cancer among women who work shifts that includes night work.
Address Department of Health Sciences, Mid Sweden University, Sundsvall. Sweden. Anders.Knutsson@miun.se
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0355-3140 ISBN Medium
Area Expedition Conference
Notes PMID:23007867 Approved no
Call Number IDA @ john @ Serial 154
Permanent link to this record
 

 
Author Sherman, H.; Gutman, R.; Chapnik, N.; Meylan, J.; le Coutre, J.; Froy, O.
Title (up) Caffeine alters circadian rhythms and expression of disease and metabolic markers Type Journal Article
Year 2011 Publication The International Journal of Biochemistry & Cell Biology Abbreviated Journal Int J Biochem Cell Biol
Volume 43 Issue 5 Pages 829-838
Keywords Human Health; Animals; Biological Markers/blood/metabolism; Body Weight/drug effects/physiology; Caffeine/*pharmacology; Caloric Restriction; Circadian Rhythm/*drug effects/genetics/physiology; *Disease/genetics; Eating/drug effects/physiology; Gene Expression Regulation/*drug effects/genetics; HEK293 Cells; Humans; Inflammation/metabolism; Male; Mice; Mice, Inbred C57BL; Motor Activity/drug effects/physiology
Abstract The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.
Address Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1357-2725 ISBN Medium
Area Expedition Conference
Notes PMID:21352949 Approved no
Call Number LoNNe @ kagoburian @ Serial 810
Permanent link to this record
 

 
Author Kujanik, S.; Mikulecky, M.
Title (up) Circadian and ultradian extrasystole rhythms in healthy individuals at elevated versus lowland altitudes Type Journal Article
Year 2010 Publication International Journal of Biometeorology Abbreviated Journal Int J Biometeorol
Volume 54 Issue 5 Pages 531-538
Keywords Human Health; Acclimatization/physiology; Aged; *Altitude; Anoxia/etiology; Cardiac Complexes, Premature/*physiopathology; Circadian Rhythm/*physiology; Electrocardiography, Ambulatory; Heart Rate/*physiology; Humans; Male; Middle Aged; Reference Values; Time Factors
Abstract We defined chronobiologic norms for supraventricular and ventricular single extrasystoles (SV and VE, respectively) in healthy older males in lowland areas. The study was extended to higher altitudes, where hypobaric hypoxia was expected to increase extrasystole frequency, while perhaps not changing rhythmicity. In healthy men (lowland n = 37, altitude n = 22), aged 49-72 years, mean numbers of SVs and VEs were counted over a 24-h period. Cosinor regression was used to test the 24-h rhythm and its 2nd-10th harmonics. The resulting approximating function for either extrasystole type includes its point, 95% confidence interval of the mean, and 95% tolerance for single measurement estimates. Separate hourly differences (delta) between altitude and lowland (n = 59) were also analysed. Hourly means were significantly higher in the mountains versus lowland, by +0.8 beats/h on average for SVs, and by +0.9 beats/h for VEs. A relatively rich chronogram for VEs in mountains versus lowland exists. Delta VEs clearly display a 24-h component and its 2nd, 3rd, 4th and 7th harmonics. This results in significantly higher accumulation of VEs around 8.00 a.m., 11.00 a.m. and 3.00 p.m. in the mountains. The increase in extrasystole occurrence in the mountains is probably caused by higher hypobaric hypoxia and resulting sympathetic drive. Healthy men at elevated altitudes show circadian and several ultradian rhythms of single VEs dependent on the hypoxia level. This new methodological approach--evaluating the differences between two locations using delta values--promises to provide deeper insight into the occurrence of premature beats.
Address Dept of Physiology, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 66 Kosice, Slovak Republic. stefan.kujanik@upjs.sk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7128 ISBN Medium
Area Expedition Conference
Notes PMID:20195873 Approved no
Call Number LoNNe @ kagoburian @ Serial 774
Permanent link to this record
 

 
Author Kantermann, T.
Title (up) Circadian biology: sleep-styles shaped by light-styles Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue 16 Pages R689-90
Keywords Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight
Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.
Address Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23968925 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 501
Permanent link to this record
 

 
Author Barclay, J.L.; Husse, J.; Bode, B.; Naujokat, N.; Meyer-Kovac, J.; Schmid, S.M.; Lehnert, H.; Oster, H.
Title (up) Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork Type Journal Article
Year 2012 Publication PloS one Abbreviated Journal PLoS One
Volume 7 Issue 5 Pages e37150
Keywords Animals; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Disease Models, Animal; Eating/genetics; Gene Expression Regulation; Liver/metabolism; Male; Mice; Sleep Disorders, Circadian Rhythm/*metabolism/physiopathology; Suprachiasmatic Nucleus/*metabolism; Transcriptome
Abstract Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers.
Address Max Planck Institute of Biophysical Chemistry, Gottingen, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:22629359; PMCID:PMC3357388 Approved no
Call Number IDA @ john @ Serial 94
Permanent link to this record