toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kloog, I.; Portnov, B.A.; Rennert, H.S.; Haim, A. url  doi
openurl 
  Title (up) Does the modern urbanized sleeping habitat pose a breast cancer risk? Type Journal Article
  Year 2011 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 28 Issue 1 Pages 76-80  
  Keywords Human Health; ged; Alcohol Drinking/adverse effects; Breast Neoplasms/*etiology; Case-Control Studies; Circadian Rhythm/*radiation effects; Female; Humans; Light/*adverse effects; Middle Aged; Odds Ratio; Risk Factors; *Sleep; Urbanization  
  Abstract Due to its disruptive effects on circadian rhythms and sleep deprivation at night, shiftworking is currently recognized as a risk factor for breast cancer (BC). As revealed by the present analysis based on a comparative case-control study of 1679 women, exposure to light-at-night (LAN) in the “sleeping habitat” is significantly associated with BC risk (odds ratio [OR] = 1.220, 95% confidence interval [CI] = 1.118-1.311; p < .001), controlling for education, ethnicity, fertility, and alcohol consumption. The novelty of the present research is that, to the best of the authors' knowledge, it is the first study to have identified an unequivocal positive association between bedroom-light intensity and BC risk. Thus, according to the results of the present study, not only should artificial light exposure in the working environment be considered as a potential risk factor for BC, but also LAN in the “sleeping habitat.”  
  Address Department of Natural Resources and Environmental Management, Graduate School of Management, University of Haifa, Haifa, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21182407 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 770  
Permanent link to this record
 

 
Author Boivin, D.B.; Duffy, J.F.; Kronauer, R.E.; Czeisler, C.A. url  doi
openurl 
  Title (up) Dose-response relationships for resetting of human circadian clock by light Type Journal Article
  Year 1996 Publication Nature Abbreviated Journal Nature  
  Volume 379 Issue 6565 Pages 540-542  
  Keywords Human Health; Adult; Body Temperature; Circadian Rhythm/*radiation effects; Dose-Response Relationship, Radiation; Humans; *Light; Male; NASA Discipline Number 18-10; NASA Discipline Regulatory Physiology; NASA Program Space Physiology and Countermeasures; Non-NASA Center  
  Abstract Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.  
  Address Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8596632 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 722  
Permanent link to this record
 

 
Author Landers, J.A.; Tamblyn, D.; Perriam, D. url  doi
openurl 
  Title (up) Effect of a blue-light-blocking intraocular lens on the quality of sleep Type Journal Article
  Year 2009 Publication Journal of Cataract and Refractive Surgery Abbreviated Journal J Cataract Refract Surg  
  Volume 35 Issue 1 Pages 83-88  
  Keywords Aged; Aged, 80 and over; Circadian Rhythm/physiology; Female; Humans; *Lens Implantation, Intraocular; *Lenses, Intraocular; Light; Male; *Phacoemulsification; Prosthesis Design; Questionnaires; Sleep/*physiology; blue light; sleep  
  Abstract PURPOSE: To evaluate whether implantation of a blue-light-blocking intraocular lens (IOL) affects sleep quality. SETTING: Repatriation General Hospital, Adelaide, Australia. METHODS: This study comprised patients who had bilateral cataract surgery during the preceding 12 months with implantation of a conventional SI40NB IOL or an AcrySof Natural SN60WF blue-light-blocking IOL. Patients were contacted by telephone at least 6 months after second-eye surgery, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire was administered. Results were compared between groups. RESULTS: Of the 49 patients, 31 received conventional IOLs and 18, blue-light-blocking IOLs. The mean age of the patients was 80 years +/- 8.1 (SD). The median PSQI score was 6 (interquartile range 3 to 8). There were no statistically significant differences in PSQI scores between the 2 IOL groups (P = .65). This remained true after adjustment for sex, age, medication, and time since surgery. CONCLUSION: The blue-light-blocking IOL had no effect on the sleep quality of patients, indicating that these IOLs might serve as an alternative to conventional IOLs without a detrimental effect on circadian rhythm.  
  Address Department of Ophthalmology, Repatriation General Hospital, Adelaide, Australia. john.landers@bigpond.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0886-3350 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19101429 Approved no  
  Call Number IDA @ john @ Serial 288  
Permanent link to this record
 

 
Author Sharkey, K.M.; Carskadon, M.A.; Figueiro, M.G.; Zhu, Y.; Rea, M.S. url  doi
openurl 
  Title (up) Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules Type Journal Article
  Year 2011 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 12 Issue 7 Pages 685-692  
  Keywords Affect/physiology/radiation effects; Circadian Rhythm/*physiology/*radiation effects; Color; Dose-Response Relationship, Radiation; Female; Humans; *Light; Male; Melatonin/metabolism; Photoperiod; Phototherapy/*methods; Saliva/metabolism; Sleep/physiology/radiation effects; Sleep Disorders, Circadian Rhythm/prevention & control/*therapy; Stress, Psychological/prevention & control/therapy; Treatment Outcome; Young Adult; blue light  
  Abstract OBJECTIVE: We examined the effects of an advanced sleep/wake schedule and morning short wavelength (blue) light in 25 adults (mean age+/-SD=21.8+/-3 years; 13 women) with late sleep schedules and subclinical features of delayed sleep phase disorder (DSPD). METHODS: After a baseline week, participants kept individualized, fixed, advanced 7.5-h sleep schedules for 6days. Participants were randomly assigned to groups to receive “blue” (470nm, approximately 225lux, n=12) or “dim” (<1lux, n=13) light for 1h after waking each day. Head-worn “Daysimeters” measured light exposure; actigraphs and sleep diaries confirmed schedule compliance. Salivary dim light melatonin onset (DLMO), self-reported sleep, and mood were examined with 2x2 ANOVA. RESULTS: After 6days, both groups showed significant circadian phase advances, but morning blue light was not associated with larger phase shifts than dim-light exposure. The average DLMO advances (mean+/-SD) were 1.5+/-1.1h in the dim light group and 1.4+/-0.7h in the blue light group. CONCLUSIONS: Adherence to a fixed advanced sleep/wake schedule resulted in significant circadian phase shifts in young adults with subclinical DSPD with or without morning blue light exposure. Light/dark exposures associated with fixed early sleep schedules are sufficient to advance circadian phase in young adults.  
  Address Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University, Box G-RIH, Providence, RI 02912, USA. katherine_sharkey@brown.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21704557; PMCID:PMC3145013 Approved no  
  Call Number IDA @ john @ Serial 303  
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. url  doi
openurl 
  Title (up) Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 16 Pages 1554-1558  
  Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm  
  Abstract The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.  
  Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23910656; PMCID:PMC4020279 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 505  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: