|   | 
Details
   web
Records
Author Srinivasan, V.; Spence, D.W.; Pandi-Perumal, S.R.; Trakht, I.; Esquifino, A.I.; Cardinali, D.P.; Maestroni, G.J.
Title Melatonin, environmental light, and breast cancer Type Journal Article
Year 2008 Publication Breast Cancer Research and Treatment Abbreviated Journal Breast Cancer Res Treat
Volume (down) 108 Issue 3 Pages 339-350
Keywords Human Health; Breast Neoplasms/*etiology/*physiopathology; Circadian Rhythm/physiology; Female; Humans; Light; Lighting/*adverse effects; Melatonin/*physiology; Occupational Exposure/adverse effects
Abstract Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) alpha-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.
Address Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-6806 ISBN Medium
Area Expedition Conference
Notes PMID:17541739 Approved no
Call Number LoNNe @ kagoburian @ Serial 815
Permanent link to this record
 

 
Author Fonken, L.K.; Workman, J.L.; Walton, J.C.; Weil, Z.M.; Morris, J.S.; Haim, A.; Nelson, R.J.
Title Light at night increases body mass by shifting the time of food intake Type Journal Article
Year 2010 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume (down) 107 Issue 43 Pages 18664-18669
Keywords Animals; Body Mass Index; *Circadian Rhythm; Disease Models, Animal; Eating/*physiology/psychology/*radiation effects; Energy Intake; Feeding Behavior/physiology/psychology/radiation effects; Glucose Tolerance Test; Humans; Male; Metabolic Syndrome X/etiology; Mice; Motor Activity; Obesity/*etiology/pathology/physiopathology/psychology; *Photoperiod
Abstract The global increase in the prevalence of obesity and metabolic disorders coincides with the increase of exposure to light at night (LAN) and shift work. Circadian regulation of energy homeostasis is controlled by an endogenous biological clock that is synchronized by light information. To promote optimal adaptive functioning, the circadian clock prepares individuals for predictable events such as food availability and sleep, and disruption of clock function causes circadian and metabolic disturbances. To determine whether a causal relationship exists between nighttime light exposure and obesity, we examined the effects of LAN on body mass in male mice. Mice housed in either bright (LL) or dim (DM) LAN have significantly increased body mass and reduced glucose tolerance compared with mice in a standard (LD) light/dark cycle, despite equivalent levels of caloric intake and total daily activity output. Furthermore, the timing of food consumption by DM and LL mice differs from that in LD mice. Nocturnal rodents typically eat substantially more food at night; however, DM mice consume 55.5% of their food during the light phase, as compared with 36.5% in LD mice. Restricting food consumption to the active phase in DM mice prevents body mass gain. These results suggest that low levels of light at night disrupt the timing of food intake and other metabolic signals, leading to excess weight gain. These data are relevant to the coincidence between increasing use of light at night and obesity in humans.
Address Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:20937863; PMCID:PMC2972983 Approved no
Call Number IDA @ john @ Serial 169
Permanent link to this record
 

 
Author Obayashi, K.; Saeki, K.; Iwamoto, J.; Okamoto, N.; Tomioka, K.; Nezu, S.; Ikada, Y.; Kurumatani, N.
Title Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study Type Journal Article
Year 2013 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume (down) 98 Issue 1 Pages 337-344
Keywords *Aged; Aged, 80 and over; Case-Control Studies; *Circadian Rhythm/physiology; Cross-Sectional Studies; Dyslipidemias/complications/metabolism/*urine; Female; Humans; Japan; *Light; Male; Melatonin/secretion/*urine; Obesity/complications/metabolism/*urine; Photoperiod
Abstract CONTEXT: Obesity and exposure to light at night (LAN) have increased globally. Although LAN suppresses melatonin secretion and disturbs body mass regulation in experimental settings, its associations with melatonin secretion, obesity, and other metabolic consequences in uncontrolled home settings remain unclear. OBJECTIVE: The aim of this study was to determine the association of exposure to LAN in an uncontrolled home setting with melatonin secretion, obesity, dyslipidemia, and diabetes. DESIGN AND PARTICIPANTS: A cross-sectional study was performed in 528 elderly individuals (mean age, 72.8 yr). MEASURES: The intensity of LAN in the bedroom was measured at 1-min intervals during two consecutive nights, along with overnight urinary melatonin excretion and metabolic parameters. RESULTS: Compared with the Dim group (average <3 lux; n = 383), the LAN group (average >/=3 lux; n = 145) showed significantly higher body weight (adjusted mean, 58.8 vs. 56.6 kg; P = 0.01), body mass index (23.3 vs. 22.7 kg/m(2); P = 0.04), waist circumference (84.9 vs. 82.8 cm; P = 0.01), triglyceride levels (119.7 vs. 99.5 mg/dl; P < 0.01), and low-density lipoprotein cholesterol levels (128.6 vs. 122.2 mg/dl; P = 0.04), and showed significantly lower high-density lipoprotein cholesterol levels (57.4 vs. 61.3 mg/dl; P = 0.02). These associations were independent of numerous potential confounders, including urinary melatonin excretion. Furthermore, LAN exposure is associated with higher odds ratios (ORs) for obesity (body mass index: OR, 1.89; P = 0.02; abdominal: OR, 1.62; P = 0.04) and dyslipidemia (OR, 1.72; P = 0.02) independent of demographic and socioeconomic parameters. In contrast, urinary melatonin excretion and glucose parameters did not show significant differences between the two groups. CONCLUSIONS: Exposure to LAN in an uncontrolled home setting is associated with impaired obese and lipid parameters independent of nocturnal urinary melatonin excretion in elderly individuals. Moreover, LAN exposure is associated with higher ORs for obesity and dyslipidemia independent of demographic and socioeconomic parameters.
Address Department of Community Health and Epidemiology, Nara Medical University School of Medicine, 840 Shijocho, Kashiharashi, Nara, 634-8521, Japan. obayashi@naramed-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:23118419 Approved no
Call Number IDA @ john @ Serial 168
Permanent link to this record
 

 
Author Schmoll, C.; Khan, A.; Aspinall, P.; Goudie, C.; Koay, P.; Tendo, C.; Cameron, J.; Roe, J.; Deary, I.; Dhillon, B.
Title New light for old eyes: comparing melanopsin-mediated non-visual benefits of blue-light and UV-blocking intraocular lenses Type
Year 2014 Publication The British Journal of Ophthalmology Abbreviated Journal Br J Ophthalmol
Volume (down) 98 Issue 1 Pages 124-128
Keywords Aged; Cataract/*physiopathology; Circadian Rhythm/physiology; Cognition/*physiology; Female; Humans; Lens Implantation, Intraocular; *Lenses, Intraocular; Light; Male; Phacoemulsification; Prospective Studies; Questionnaires; Reaction Time/physiology; Regression Analysis; Rod Opsins/*physiology; Sleep/*physiology; Physiology; Retina; blue blocker; blue light
Abstract BACKGROUND/AIMS: Melanopsin-expressing photosensitive retinal ganglion cells form a blue-light-sensitive non-visual system mediating diverse physiological effects including circadian entrainment and cognitive alertness. Reduced blue wavelength retinal illumination through cataract formation is thought to blunt these responses while cataract surgery and intraocular lens (IOL) implantation have been shown to have beneficial effects on sleep and cognition. We aimed to use the reaction time (RT) task and the Epworth Sleepiness Score (ESS) as a validated objective platform to compare non-visual benefits of UV- and blue-blocking IOLs. METHODS: Patients were prospectively randomised to receive either a UV- or blue-blocking IOL, performing an RT test and ESS questionnaire before and after surgery. Optical blurring at the second test controlled for visual improvement. Non-operative age-matched controls were recruited for comparison. RESULTS: 80 participants completed the study. Those undergoing first-eye phacoemulsification demonstrated significant improvements in RT over control (p=0.001) and second-eye surgery patients (p=0.03). Moreover, reduced daytime sleepiness was measured by ESS for the first-eye surgery group (p=0.008) but not for the second-eye group (p=0.09). Choice of UV- or blue-blocking IOL made no significant difference to magnitude of cognitive improvement (p=0.272). CONCLUSIONS: Phacoemulsification, particularly first-eye surgery, has a strong positive effect on cognition and daytime alertness, regardless of IOL type.
Address Princess Alexandra Eye Hospital, , Edinburgh, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-1161 ISBN Medium
Area Expedition Conference
Notes PMID:24158845 Approved no
Call Number IDA @ john @ Serial 342
Permanent link to this record
 

 
Author Chellappa, S.L.; Viola, A.U.; Schmidt, C.; Bachmann, V.; Gabel, V.; Maire, M.; Reichert, C.F.; Valomon, A.; Gotz, T.; Landolt, H.-P.; Cajochen, C.
Title Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3 Type Journal Article
Year 2012 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume (down) 97 Issue 3 Pages E433-7
Keywords Adult; Alleles; Cross-Over Studies; Female; Genotype; Homozygote; Humans; *Light; Male; Melatonin/*blood/genetics; *Minisatellite Repeats; Period Circadian Proteins/*genetics; *Polymorphism, Genetic; Questionnaires; Sleep/genetics; Wakefulness/*genetics
Abstract CONTEXT: Light exposure, particularly at the short-wavelength range, triggers several nonvisual responses in humans. However, the extent to which the melatonin-suppressing and alerting effect of light differs among individuals remains unknown. OBJECTIVE: Here we investigated whether blue-enriched polychromatic light impacts differentially on melatonin and subjective and objective alertness in healthy participants genotyped for the PERIOD3 (PER3) variable-number, tandem-repeat polymorphism. DESIGN, SETTING, AND PARTICIPANTS: Eighteen healthy young men homozygous for the PER3 polymorphism (PER3(5/5)and PER3(4/4)) underwent a balanced crossover design during the winter season, with light exposure to compact fluorescent lamps of 40 lux at 6500 K and at 2500 K during 2 h in the evening. RESULTS: In comparison to light at 2500 K, blue-enriched light at 6500 K induced a significant suppression of the evening rise in endogenous melatonin levels in PER3(5/5) individuals but not in PER3(4/4). Likewise, PER3(5/5) individuals exhibited a more pronounced alerting response to light at 6500 K than PER3(4/4) volunteers. Waking electroencephalographic activity in the theta range (5-7 Hz), a putative correlate of sleepiness, was drastically attenuated during light exposure at 6500 K in PER3(5/5) individuals as compared with PER3(4/4). CONCLUSIONS: We provide first evidence that humans homozygous for the PER3 5/5 allele are particularly sensitive to blue-enriched light, as indexed by the suppression of endogenous melatonin and waking theta activity. Light sensitivity in humans may be modulated by a clock gene polymorphism implicated in the sleep-wake regulation.
Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstrasse 27, CH-4012 Basel, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:22188742 Approved no
Call Number IDA @ john @ Serial 301
Permanent link to this record