toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Parent, M.-E.; El-Zein, M.; Rousseau, M.-C.; Pintos, J.; Siemiatycki, J. url  doi
openurl 
  Title Night work and the risk of cancer among men Type Journal Article
  Year (down) 2012 Publication American Journal of Epidemiology Abbreviated Journal Am J Epidemiol  
  Volume 176 Issue 9 Pages 751-759  
  Keywords Adult; Aged; *Circadian Rhythm; Humans; Male; *Men's Health; Middle Aged; Neoplasms/*epidemiology; Occupations/*statistics & numerical data; Personnel Staffing and Scheduling/*statistics & numerical data; Quebec/epidemiology; Risk Factors; oncogenesis  
  Abstract Night work might influence cancer risk, possibly via suppression of melatonin release. In a population-based case-control study conducted in Montreal, Quebec, Canada, between 1979 and 1985, job histories, including work hours, were elicited from 3,137 males with incident cancer at one of 11 anatomic sites and from 512 controls. Compared with men who never worked at night, the adjusted odds ratios among men who ever worked at night were 1.76 (95% confidence interval (CI): 1.25, 2.47) for lung cancer, 2.03 (95% CI: 1.43, 2.89) for colon cancer, 1.74 (95% CI: 1.22, 2.49) for bladder cancer, 2.77 (95% CI: 1.96, 3.92) for prostate cancer, 2.09 (95% CI: 1.40, 3.14) for rectal cancer, 2.27 (95% CI: 1.24, 4.15) for pancreatic cancer, and 2.31 (95% CI: 1.48, 3.61) for non-Hodgkin's lymphoma. Equivocal evidence or no evidence was observed for cancers of the stomach (odds ratio (OR) = 1.34, 95% CI: 0.85, 2.10), kidney (OR = 1.42, 95% CI: 0.86, 2.35), and esophagus (OR = 1.51, 95% CI: 0.80, 2.84) and for melanoma (OR = 1.04, 95% CI: 0.49, 2.22). There was no evidence of increasing risk with increasing duration of night work, with risks generally being increased across all duration categories. Results suggest that night work may increase cancer risk at several sites among men.  
  Address INRS-Institut Armand-Frappier, University of Quebec, Laval, Canada. marie-elise.parent@iaf.inrs.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9262 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23035019 Approved no  
  Call Number IDA @ john @ Serial 158  
Permanent link to this record
 

 
Author Peplonska, B.; Bukowska, A.; Sobala, W.; Reszka, E.; Gromadzinska, J.; Wasowicz, W.; Lie, J.A.; Kjuus, H.; Ursin, G. url  doi
openurl 
  Title Rotating night shift work and mammographic density Type Journal Article
  Year (down) 2012 Publication Cancer Epidemiology, Biomarkers & Prevention : a Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology Abbreviated Journal Cancer Epidemiol Biomarkers Prev  
  Volume 21 Issue 7 Pages 1028-1037  
  Keywords Adult; Breast/*pathology; Breast Neoplasms/*etiology/*pathology; Circadian Rhythm/*physiology; Cross-Sectional Studies; Female; Humans; Melatonin/urine; Middle Aged; *Midwifery; *Nursing Staff; Questionnaires; Risk Factors; *Work Schedule Tolerance; oncogenesis  
  Abstract BACKGROUND: An increased risk of breast cancer has been observed in night shift workers. Exposure to artificial light at night and disruption of the endogenous circadian rhythm with suppression of the melatonin synthesis have been suggested mechanisms. We investigated the hypothesis that rotating night shift work is associated with mammographic density. METHODS: We conducted a cross-sectional study on the association between rotating night shift work characteristics, 6-sulfatoxymelatonin (MT6s) creatinine adjusted in a spot morning urine sample, and a computer-assisted measure of mammographic density in 640 nurses and midwives ages 40 to 60 years. The associations were evaluated using regression models adjusted for age, body mass index, menopausal status, age at menopause, age at menarche, smoking, and the calendar season of the year when mammography was conducted. RESULTS: The adjusted means of percentage of mammographic density and absolute density were slightly higher among women working rotating night shifts but not statistically significant [percentage of mammographic density = 23.6%, 95% confidence interval (CI), 21.9%-25.4% vs. 22.5%, 95% CI, 20.8%-24.3%; absolute density = 23.9 cm(2), 95% CI, 21.4-26.4 cm(2) vs. 21.8 cm(2), 95% CI, 19.4-24.3 cm(2) in rotating night shift and day shift nurses, respectively). There were no significant associations between the current or cumulative rotating night shift work exposure metrics and mammographic density. No association was observed between morning MT6s and mammographic density. CONCLUSIONS: The hypothesis on the link between rotating night shift work, melatonin synthesis disruption, and mammographic density is not supported by the results of the present study. IMPACT: It is unlikely that the development of breast cancer in nurses working rotating night shifts is mediated by an increase in mammographic density.  
  Address Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland. beatap@imp.lodz.pl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1055-9965 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22539602 Approved no  
  Call Number IDA @ john @ Serial 159  
Permanent link to this record
 

 
Author LeGates, T.A.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S. url  doi
openurl 
  Title Aberrant light directly impairs mood and learning through melanopsin-expressing neurons Type Journal Article
  Year (down) 2012 Publication Nature Abbreviated Journal Nature  
  Volume 491 Issue 7425 Pages 594-598  
  Keywords Affect/drug effects/physiology/*radiation effects; Animals; Antidepressive Agents/pharmacology; Body Temperature Regulation/physiology/radiation effects; Circadian Rhythm/physiology; Cognition/drug effects/physiology/radiation effects; Corticosterone/metabolism; Depression/etiology/physiopathology; Desipramine/pharmacology; Fluoxetine/pharmacology; Learning/drug effects/physiology/*radiation effects; *Light; Long-Term Potentiation/drug effects; Male; Memory/physiology/radiation effects; Mice; Photoperiod; Retinal Ganglion Cells/drug effects/*metabolism/*radiation effects; *Rod Opsins/analysis; Sleep/physiology; Wakefulness/physiology  
  Abstract The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.  
  Address Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23151476; PMCID:PMC3549331 Approved no  
  Call Number IDA @ john @ Serial 238  
Permanent link to this record
 

 
Author Chellappa, S.L.; Viola, A.U.; Schmidt, C.; Bachmann, V.; Gabel, V.; Maire, M.; Reichert, C.F.; Valomon, A.; Gotz, T.; Landolt, H.-P.; Cajochen, C. url  doi
openurl 
  Title Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3 Type Journal Article
  Year (down) 2012 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab  
  Volume 97 Issue 3 Pages E433-7  
  Keywords Adult; Alleles; Cross-Over Studies; Female; Genotype; Homozygote; Humans; *Light; Male; Melatonin/*blood/genetics; *Minisatellite Repeats; Period Circadian Proteins/*genetics; *Polymorphism, Genetic; Questionnaires; Sleep/genetics; Wakefulness/*genetics  
  Abstract CONTEXT: Light exposure, particularly at the short-wavelength range, triggers several nonvisual responses in humans. However, the extent to which the melatonin-suppressing and alerting effect of light differs among individuals remains unknown. OBJECTIVE: Here we investigated whether blue-enriched polychromatic light impacts differentially on melatonin and subjective and objective alertness in healthy participants genotyped for the PERIOD3 (PER3) variable-number, tandem-repeat polymorphism. DESIGN, SETTING, AND PARTICIPANTS: Eighteen healthy young men homozygous for the PER3 polymorphism (PER3(5/5)and PER3(4/4)) underwent a balanced crossover design during the winter season, with light exposure to compact fluorescent lamps of 40 lux at 6500 K and at 2500 K during 2 h in the evening. RESULTS: In comparison to light at 2500 K, blue-enriched light at 6500 K induced a significant suppression of the evening rise in endogenous melatonin levels in PER3(5/5) individuals but not in PER3(4/4). Likewise, PER3(5/5) individuals exhibited a more pronounced alerting response to light at 6500 K than PER3(4/4) volunteers. Waking electroencephalographic activity in the theta range (5-7 Hz), a putative correlate of sleepiness, was drastically attenuated during light exposure at 6500 K in PER3(5/5) individuals as compared with PER3(4/4). CONCLUSIONS: We provide first evidence that humans homozygous for the PER3 5/5 allele are particularly sensitive to blue-enriched light, as indexed by the suppression of endogenous melatonin and waking theta activity. Light sensitivity in humans may be modulated by a clock gene polymorphism implicated in the sleep-wake regulation.  
  Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstrasse 27, CH-4012 Basel, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-972X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22188742 Approved no  
  Call Number IDA @ john @ Serial 301  
Permanent link to this record
 

 
Author Revell, V.L.; Molina, T.A.; Eastman, C.I. url  doi
openurl 
  Title Human phase response curve to intermittent blue light using a commercially available device Type Journal Article
  Year (down) 2012 Publication The Journal of Physiology Abbreviated Journal J Physiol  
  Volume 590 Issue Pt 19 Pages 4859-4868  
  Keywords Adolescent; Adult; Circadian Clocks/physiology/*radiation effects; Female; Humans; *Light; Male; Melatonin/analysis/physiology; Saliva/chemistry; Young Adult; blue light  
  Abstract Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 x 6.6 cm at approximately 50 cm, approximately 200 muW cm(-2), approximately 185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light-dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.  
  Address University of Surrey, Guildford, Surrey GU2 7XH, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22753544; PMCID:PMC3487041 Approved no  
  Call Number IDA @ john @ Serial 345  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: