toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schnitt, S.; Ruhtz, T.; Fischer, J.; Hölker, F.; Kyba, C.C.M. url  doi
openurl 
  Title Temperature stability of the sky quality meter Type Journal Article
  Year 2013 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 13 Issue 9 Pages 12166-12174  
  Keywords *Artifacts; Atmosphere/*analysis; Environmental Monitoring/*instrumentation; Equipment Design; Equipment Failure Analysis; Photometry/*instrumentation; Reproducibility of Results; Sensitivity and Specificity; Temperature; *Transducers; Sky Quality Meter; SQM  
  Abstract The stability of radiance measurements taken by the Sky Quality Meter (SQM)was tested under rapidly changing temperature conditions during exposure to a stable light field in the laboratory. The reported radiance was found to be negatively correlated with temperature, but remained within 7% of the initial reported radiance over a temperature range of -15 degrees C to 35 degrees C, and during temperature changes of -33 degrees C/h and +70 degrees C/h.This is smaller than the manufacturer's quoted unit-to-unit systematic uncertainty of 10%,indicating that the temperature compensation of the SQM is adequate under expected outdoor operating conditions.  
  Address Institute for Space Sciences, Freie Universitat Berlin, Carl-Heinrich-Becker-Weg 6-10, Berlin 12165, Germany. christopher.kyba@wew.fu-berlin.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24030682; PMCID:PMC3821345 Approved no  
  Call Number IDA @ john @ Serial 194  
Permanent link to this record
 

 
Author Jechow, A.; Holker, F.; Kyba, C.C.M. url  doi
openurl 
  Title Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 1391  
  Keywords Skyglow; differential photometry; clouds; sky brightness  
  Abstract Artificial light at night has affected most of the natural nocturnal landscapes worldwide and the subsequent light pollution has diverse effects on flora, fauna and human well-being. To evaluate the environmental impacts of light pollution, it is crucial to understand both the natural and artificial components of light at night under all weather conditions. The night sky brightness for clear skies is relatively well understood and a reference point for a lower limit is defined. However, no such reference point exists for cloudy skies. While some studies have examined the brightening of the night sky by clouds in urban areas, the published data on the (natural) darkening by clouds is very sparse. Knowledge of reference points for the illumination of natural nocturnal environments however, is essential for experimental design and ecological modeling to assess the impacts of light pollution. Here we use differential all-sky photometry with a commercial digital camera to investigate how clouds darken sky brightness at two rural sites. The spatially resolved data enables us to identify and study the nearly unpolluted parts of the sky and to set an upper limit on ground illumination for overcast nights at sites without light pollution.  
  Address GFZ German Research Centre for Geosciences, Remote Sensing, Telegrafenberg, 14473, Potsdam, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30718668; PMCID:PMC6361923 Approved no  
  Call Number IDA @ john @ Serial 2188  
Permanent link to this record
 

 
Author Cinzano, P. url  openurl
  Title Night Sky Photometry with Sky Quality Meter Type Journal Article
  Year 2005 Publication Technical Report 9, ISTIL. V1.4. Abbreviated Journal  
  Volume Issue Pages  
  Keywords Instrumentation; light pollution; night sky brightness; photometry; instruments; calibration  
  Abstract Sky Quality Meter, a low cost and pocket size night sky brightness photometer, opens to the general public the possibility to quantify the quality of the night sky. Expecting a large diffusion of measurements taken with this instrument, I tested and characterized it. I analyzed with synthetic photometry and laboratory measurements the relationship between the SQM photometrical system and the main systems used in light pollution studies. I evaluated the conversion factors to Johnson’s B and V bands, CIE photopic and CIE scotopic responses for typical spectra and the spectral mismatch correction factors when specific filters are added.  
  Address Dipartimento di Astronomia, Vicolo dell’Osservatorio 2, I-35100 Padova, Italy; cinzano(at)lplab.it  
  Corporate Author Thesis  
  Publisher ISTIL Place of Publication Editor  
  Language English Summary Language (up) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 473  
Permanent link to this record
 

 
Author Rybnikova, N.A.; Portnov, B.A. url  doi
openurl 
  Title Using light-at-night (LAN) satellite data for identifying clusters of economic activities in Europe Type Journal Article
  Year 2015 Publication Letters in Spatial and Resource Sciences Abbreviated Journal Lett. Spatial & Resource Sci.  
  Volume 8 Issue 3 Pages 307–334  
  Keywords Remote Sensing; Economic activities; Clusters; Satellite photometry; Light-at-night; Europe; Nomenclature of Territorial Units for Statistics; C13; C38; O52; Economics  
  Abstract Enterprises organized in clusters are often efficient in stimulating urban development, productivity and profit outflows. Identifying the clusters of economic activities thus becomes an important step in devising regional development policies, aimed at the formation of clusters of economic activities in geographic areas in which this objective is desirable. However, a major problem with the identification of such clusters stems from limited reporting by individual countries and administrative entities on the regional distribution of specific economic activities, especially for small regional subdivisions. In this study, we test a possibility that missing data on geographic concentrations of economic activities in the European NUTS3 regions can be reconstructed using light-at-night satellite measurements, and that such reconstructed data can then be used for cluster identification. The matter is that light-at-night, captured by satellite sensors, is characterized by different intensity, depending on its source—production facilities, services, etc. As a result, light-at-night can become a marker of different types of economic activities, a hypothesis that the present study confirms. In particular, as the present analysis indicates, average light-at-night intensities emitted from NUTS3 regions help to explain up to 94 % variance in the areal density of several types of economic activities, performing especially well for professional, scientific and technical services (R^2=0.742−0.939), public administration (R^2=0.642−0.934), as well as for arts, entertainment and recreation (R^2=0.718−0.934). As a result, clusters of these economic activities can be identified using light-at-night data, thus helping to supplement missing information and assist regional analysis.  
  Address Department of Natural Resources and Environmental Management, Faculty of Management, University of Haifa, 31805, Mt. Carmel, Israel; Portnov@research.haifa.ac.il  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language (up) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1148  
Permanent link to this record
 

 
Author Bará, S. url  doi
openurl 
  Title Variations on a classical theme: On the formal relationship between magnitudes per square arcsecond and luminance Type Journal Article
  Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal Intl J of Sustainable Lighting  
  Volume 19 Issue 2 Pages 77  
  Keywords Instrumentation; skyglow; luminance; magnitude; sky brigthness; photometry  
  Abstract The formal link between magnitudes per square arcsecond and luminance is discussed in this paper. Directly related to the human visual system, luminance is defined in terms of the spectral radiance of the source, weighted by the CIE V(l) luminous efficiency function, and scaled by the 683 lm/W luminous efficacy constant. In consequence, any exact and spectrum-independent relationship between luminance and magnitudes per square arcsecond requires that the last ones be measured precisely in the CIE V(l) band. The luminance value corresponding to mVC=0 (zero-point of the CIE V(l) magnitude scale) depends on the reference source chosen for the definition of the magnitude system. Using absolute AB magnitudes, the zero point luminance of the CIE V(l) photometric band is 10.96 x 104 cd·m-2.  
  Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (up) English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2586-1247 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2162  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: