toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Apostol, K.; Dumroese, R.K.; Pinto, J.R.; Davis, A.S. url  doi
openurl 
  Title Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps Type Journal Article
  Year 2015 Publication Canadian Journal of Forest Research Abbreviated Journal (down) Can. J. For. Res.  
  Volume 45 Issue 12 Pages 1711-1719  
  Keywords plants  
  Abstract Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure sodium (HPS) lamps on growth and physiology of Pseudotsuga menziesii (Douglas-fir) and Picea engelmannii (Engelmann spruce) seedlings. We used three latitudinal sources for each species: British Columbia (BC), Idaho (ID), and New Mexico (NM). Container seedlings were grown for 17 weeks in the greenhouse under an 18-h photoperiod of ambient solar light supplemented with light delivered from HPS or LED. In general, seedlings grown under LED had significantly greater growth, gas exchange rates, and chlorophyll contents than those seedlings grown under HPS. The growth and physiological responses to supplemental lighting varied greatly among species and seed sources. Generally, LED-grown seedlings from BC had the greatest growth and tissue dry matter followed by ID and NM populations. Compared with HPS, the significant increase in seedling growth and concomitant energy savings with LED (29% energy consumption relative to HPS) demonstrates the promise of using LED as PAR supplemental lighting for container seedling production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-5067 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1250  
Permanent link to this record
 

 
Author Karling, J.S. url  doi
openurl 
  Title A Preliminary Account of the Influence of Light and Temperature on Growth and Reproduction in Chara fragilis Type Journal Article
  Year 1924 Publication Bulletin of the Torrey Botanical Club Abbreviated Journal (down) Bulletin of the Torrey Botanical Club  
  Volume 51 Issue 12 Pages 469  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-9618 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2404  
Permanent link to this record
 

 
Author Liu, J.D.; Goodspeed, D.; Sheng, Z.; Li, B.; Yang, Y.; Kliebenstein, D.J.; Braam, J. url  doi
openurl 
  Title Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants Type Journal Article
  Year 2015 Publication BMC Plant Biology Abbreviated Journal (down) BMC Plant Biol  
  Volume 15 Issue Pages 92  
  Keywords Plants  
  Abstract BACKGROUND: The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. RESULTS: Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. CONCLUSIONS: Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.  
  Address Department of BioSciences, Rice University, Houston, TX, 77005, USA. braam@rice.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2229 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25879637; PMCID:PMC4396971 Approved no  
  Call Number LoNNe @ kyba @ Serial 1458  
Permanent link to this record
 

 
Author Breitler, J.-C.; Djerrab, D.; Leran, S.; Toniutti, L.; Guittin, C.; Severac, D.; Pratlong, M.; Dereeper, A.; Etienne, H.; Bertrand, B. url  doi
openurl 
  Title Full moonlight-induced circadian clock entrainment in Coffea arabica Type Journal Article
  Year 2020 Publication BMC Plant Biology Abbreviated Journal (down) BMC Plant Biol  
  Volume 20 Issue 1 Pages 24  
  Keywords Moonlight; Plants  
  Abstract BACKGROUND: It is now well documented that moonlight affects the life cycle of invertebrates, birds, reptiles, and mammals. The lunisolar tide is also well-known to alter plant growth and development. However, although plants are known to be very photosensitive, few studies have been undertaken to explore the effect of moonlight on plant physiology. RESULTS: Here for the first time we report a massive transcriptional modification in Coffea arabica genes under full moonlight conditions, particularly at full moon zenith and 3 h later. Among the 3387 deregulated genes found in our study, the main core clock genes were affected. CONCLUSIONS: Moonlight also negatively influenced many genes involved in photosynthesis, chlorophyll biosynthesis and chloroplast machinery at the end of the night, suggesting that the full moon has a negative effect on primary photosynthetic machinery at dawn. Moreover, full moonlight promotes the transcription of major rhythmic redox genes and many heat shock proteins, suggesting that moonlight is perceived as stress. We confirmed this huge impact of weak light (less than 6 lx) on the transcription of circadian clock genes in controlled conditions mimicking full moonlight.  
  Address UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2229 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31941456 Approved no  
  Call Number GFZ @ kyba @ Serial 2817  
Permanent link to this record
 

 
Author Rydin, C; Bolinder, K url  doi
openurl 
  Title Moonlight pollination in the gymnosperm Ephedra (Gnetales) Type Journal Article
  Year 2015 Publication Biology Letters Abbreviated Journal (down) Biol. Lett.  
  Volume 11 Issue 4 Pages 20140993  
  Keywords Plants; anemophily; entomophily; lunar phases; nocturnal insects; lunar cycle; light at night; Ephedra; Ephedra distachya; pollination  
  Abstract Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.  
  Address Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: