|   | 
Details
   web
Records
Author Correa-Cano, M.E.; Goettsch, B.; Duffy, J.P.; Bennie, J.; Inger, R.; Gaston, K.J.
Title Erosion of natural darkness in the geographic ranges of cacti Type Journal Article
Year 2018 Publication Scientific Reports Abbreviated Journal (up) Sci Rep
Volume 8 Issue 1 Pages 4347
Keywords Plants; Remote Sensing
Abstract Naturally dark nighttime environments are being widely eroded by the introduction of artificial light at night (ALAN). The biological impacts vary with the intensity and spectrum of ALAN, but have been documented from molecules to ecosystems. How globally severe these impacts are likely to be depends in large part on the relationship between the spatio-temporal distribution of ALAN and that of the geographic ranges of species. Here, we determine this relationship for the Cactaceae family. Using maps of the geographic ranges of cacti and nighttime stable light composite images for the period 1992 to 2012, we found that a high percentage of cactus species were experiencing ALAN within their ranges in 1992, and that this percentage had increased by 2012. For almost all cactus species (89.7%) the percentage of their geographic range that was lit increased from 1992-1996 to 2008-2012, often markedly. There was a significant negative relationship between the species richness of an area, and that of threatened species, and the level of ALAN. Cacti could be particularly sensitive to this widespread and ongoing intrusion of ALAN into their geographic ranges, especially when considering the potential for additive and synergistic interactions with the impacts of other anthropogenic pressures.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:29531261; PMCID:PMC5847551 Approved no
Call Number GFZ @ kyba @ Serial 1824
Permanent link to this record
 

 
Author Matsuda, R.; Yamano, T.; Murakami, K.; Fujiwara, K.
Title Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury Type Journal Article
Year 2016 Publication Scientia Horticulturae Abbreviated Journal (up) Scientia Horticulturae
Volume 198 Issue Pages 363-369
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4238 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1387
Permanent link to this record
 

 
Author Flowers, N.D.; Gibson, D.J.
Title Quantified effects of artificial versus natural nighttime lighting on the Eurasian grassesBothriochloa bladhii(Poaceae) andBothriochloa ischaemum(Poaceae) and the North American grassesPanicum virgatum(Poaceae) andSorghastrum nutans(Poaceae) Type Journal Article
Year 2018 Publication The Journal of the Torrey Botanical Society Abbreviated Journal (up) The Journal of the Torrey Botanical Society
Volume 145 Issue 2 Pages 147-155
Keywords Plants
Abstract Artificial nighttime lighting (light pollution) is increasing worldwide and may have undocumented consequences. In this study, we asked if artificial nighttime lighting affects the performance in monoculture of four grass species: the Eurasian Bothriochloa bladhii (Retz.) S.T. Blake (Poaceae), and Bothriochloa ischaemum (L.) Keng (Poaceae); and the North American Panicum virgatum (L.) (Poaceae), and Sorghastrum nutans (L.) Nash (Poaceae). We conducted a field pot experiment to test for the effects of artificial nighttime lighting and plant density on height, biomass, and leaf number. Height of the tallest individual per population was affected by separate interactions between species and density, light, and time. Final total biomass per individual biomass was increased under nighttime lighting, but more so at low density. Leaf number was increased by artificial nighttime lighting irrespective of species. These results suggest that artificial nighttime lighting may have previously undocumented influences on plant height, biomass, and leaf number within certain species. These findings warrant more in-depth studies into the role that artificial nighttime lighting can have on various plant species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-5674 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1902
Permanent link to this record
 

 
Author Massetti, L.
Title Assessing the impact of street lighting on Platanus x acerifolia phenology Type Journal Article
Year 2018 Publication Urban Forestry & Urban Greening Abbreviated Journal (up) Urban Forestry & Urban Greening
Volume 34 Issue Pages 71-77
Keywords Plants
Abstract Autumn phenology is an important part of the tree growing season that is still poorly understood. In addition to the environmental factors that might affect its timing, there are artificial effects introduced by modern society that could interfere with it, such as the increasing use of artificial light to illuminate urban nights. This study investigates the relationship between outdoor public lighting and leaf senescence of Platanus x acerifolia that constitutes with more than 4000 individuals, and 6% of public greening in Florence, Italy. The difference in autumn phenology under two lighting conditions was assessed by analysing data collected in a real context, using a presence-absence protocol of green leaves on 283 trees during leaf fall season from 2014 to 2017. Trees were classified in two groups of different light exposure. In 2016-2017, data were also collected at Cascine park, the main green area within the city and darker than the monitored sites. According to the analysis, the percentage of trees with green leaves under luminaires was significantly higher than trees far from the luminaires, for all sites from mid-December to the end of January, and this effect was enhanced during 2016-2017 which was characterised by a colder winter. In the same year, the period of absence of green leaves at Cascine started at least 20 days earlier than the other sites. These findings should be taken into consideration by scientists because artificial light could affect autumn phenology and therefore the length of the vegetative season, and by urban greening and light managers during the design and management of public green spaces. Moreover, the presence-absence protocol proved to be suitable for collecting observations because it was easy to perform in a real context.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-8667 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1932
Permanent link to this record
 

 
Author Xu, C.; Wang, H.-J.; Yu, Q.; Wang, H.-Z.; Liang, X.-M.; Liu, M.; Jeppesen, E.
Title Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes Type Journal Article
Year 2019 Publication Water Abbreviated Journal (up) Water
Volume 11 Issue 7 Pages 1512
Keywords Plants
Abstract Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2606
Permanent link to this record