toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M. url  doi
openurl 
  Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
  Year 2011 Publication Annual Review of Plant Biology Abbreviated Journal (up) Annu Rev Plant Biol  
  Volume 62 Issue Pages 335-364  
  Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light  
  Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.  
  Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-5008 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21526969 Approved no  
  Call Number IDA @ john @ Serial 341  
Permanent link to this record
 

 
Author Gaston, K.J.; Davies, T.W.; Nedelec, S.L.; Holt, L.A. url  doi
openurl 
  Title Impacts of Artificial Light at Night on Biological Timings Type Journal Article
  Year 2017 Publication Annual Review of Ecology, Evolution, and Systematics Abbreviated Journal (up) Annu. Rev. Ecol. Evol. Syst.  
  Volume 48 Issue 1 Pages 49-68  
  Keywords Review; Animals; Plants  
  Abstract The use of artificial lighting to illuminate the night has provided substantial benefits to humankind. It has also disrupted natural daily, seasonal, and lunar light cycles as experienced by a diversity of organisms, and hence it has also altered cues for the timings of many biological activities. Here we review the evidence for impacts of artificial nighttime lighting on these timings. Although the examples are scattered, concerning a wide variety of species and environments, the breadth of such impacts is compelling. Indeed, it seems reasonable to conclude that the vast majority of impacts of artificial nighttime lighting stem from effects on biological timings. This adds support to arguments that artificial nighttime lighting has a quite pervasive and marked impact on ecological systems, that the rapid expansion in the global extent of both direct illuminance and skyglow is thus of significant concern, and that a widespread implementation of mitigation measures is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-592X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2449  
Permanent link to this record
 

 
Author Krause, G.H.; Weis, E. url  doi
openurl 
  Title Chlorophyll Fluorescence and Photosynthesis: The Basics Type Journal Article
  Year 1991 Publication Annual Review of Plant Physiology and Plant Molecular Biology Abbreviated Journal (up) Annu. Rev. Plant. Physiol. Plant. Mol. Biol.  
  Volume 42 Issue 1 Pages 313-349  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-2519 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 654  
Permanent link to this record
 

 
Author Raven, J.A.; Cockell, C.S. url  doi
openurl 
  Title Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe) Type Journal Article
  Year 2006 Publication Astrobiology Abbreviated Journal (up) Astrobiology  
  Volume 6 Issue 4 Pages 668-675  
  Keywords Plants  
  Abstract Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.  
  Address Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-8070 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16916290 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1198  
Permanent link to this record
 

 
Author Myers, L.; Christian, K.; Kirchner, R. url  doi
openurl 
  Title Flowering responses of 48 lines of oilseed rape (Brassica spp.) to vernalization and daylength Type Journal Article
  Year 1982 Publication Australian Journal of Agricultural Research Abbreviated Journal (up) Aust. J. Agric. Res.  
  Volume 33 Issue 6 Pages 927  
  Keywords Plants  
  Abstract Forty-eight lines of Brassica spp, of diverse origins were grown in the glasshouse either under natural daylengths or daylengths extended to 16 h by artificial illumination. Plants were either unvernalized or had been subjected to 6 weeks at 8¦C day and 6¦C night temperatures as seedlings. Lines could be classified into two major groups, according to whether or not vernalization or long photoperiods were essential for 50% flowering within 21 weeks. In six lines, both vernalization and long days were essential for prompt flowering, while only five lines did not respond to either treatment. Strong interactions between lines and treatments were found in the number of leaves and subtended buds at flowering. The results show that a wide range of responses is obtainable from material currently available, offering considerabk, scope for adaptation to different environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-9409 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2369  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: