|   | 
Details
   web
Records
Author Wambrauw, D.Z.K.; Kashiwatani, T.; Komura, A.; Hasegawa, H.; Narita, K.; Oku, S.; Yamaguchi, T.; Honda, K.; Maeda, omoo
Title Effect of Supplemental Light on the Quality of Green Asparagus Spears in Winter ‘Fusekomi’ Forcing Culture Type Journal Article
Year 2016 Publication Environment Control in Biology Abbreviated Journal (up) Environmental Control in Biology
Volume 54 Issue 3 Pages 147-152
Keywords Plants
Abstract Winter ‘fusekomi’ forcing culture of asparagus is becoming popular in Japan because the method can make production of asparagus possible during cold season. However, there are some problems such as color of the spear is pale, and rutin content is lower compared to spring harvest due to the low light intensity, especially in the production area which has much snow and short sunshine. The objective of this study was to clarify the effect of supplemental lighting on the yield, rutin content, sugar component (fructose, glucose, sucrose), and the color of spears. The experiments were conducted by using different irradiation time and different numbers of fluorescent lamps hanging on the tunnel poles over the cultivation bed on the winter ‘fusekomi’ forcing culture. Compared to the control, rutin content was significantly increased under supplemental lighting plots. No significant difference or negative impact was observed in sugar contents and yield on each plot. Moreover, spear color also appeared to be better under supplemental lighting than that of the control. These results suggested that supplemental lighting was effective to improve the quality of asparagus spears (such as rutin contents, spears color), especially for the production area that has low light intensity or in short day conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1880-554X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1493
Permanent link to this record
 

 
Author Grubisic, M.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F.
Title A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Type Journal Article
Year 2018 Publication Environmental Pollution Abbreviated Journal (up) Environmental Pollution
Volume 240 Issue Pages 630-638
Keywords Plants; Ecology
Abstract The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1900
Permanent link to this record
 

 
Author Kwak, M.; Je, S.; Cheng, H.; Seo, S.; Park, J.; Baek, S.; Khaine, I.; Lee, T.; Jang, J.; Li, Y.; Kim, H.; Lee, J.; Kim, J.; Woo, S.
Title Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting Type Journal Article
Year 2018 Publication Forests Abbreviated Journal (up) Forests
Volume 9 Issue 2 Pages 74
Keywords Plants
Abstract Plants can undergo external fluctuations in the natural light and dark cycle. The photosynthetic apparatus needs to operate in an appropriate manner to fluctuating environmental factors, especially in light. Yellow-poplar seedlings were exposed to nighttime artificial high-pressure sodium (HPS) lighting to evaluate night light-adaptation strategies for photosynthetic apparatus fitness relative to pigment contents, photosystem II photochemistry, photosynthetic parameters, histochemical analysis of reactive oxygen species, and plant biomass. As a result, seedlings exhibited dynamic changes including the enhancement of accessory pigments, the reduction of photosystem II photochemistry, increased stomatal limitation, downregulation of photosynthesis, and the decreased aboveground and belowground biomass under artificial night lighting. Histochemical analysis with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining indicates the accumulation of in situ superoxide radicals (O2−) and hydrogen peroxide (H2O2) in leaves exposed to the lowest level of artificial night lighting compared to control. Moreover, these leaves exposed to artificial night lighting had a lower nighttime respiration rate. These results indicated that HPS lighting during the night may act as a major factor as repressors of the fitness of photosynthesis and growth patterns, via a modification of the photosynthetic light harvesting apparatus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1999-4907 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1809
Permanent link to this record
 

 
Author Woolsey, S.; Capelli, F.; Gonser, T.; Hoehn, E.; Hostmann, M.; Junker, B.; Paetzold, A.; Roulier, C.; Schweizer, S.; Tiegs, S.D.; Tockner, K.; Weber, C.; Peter, A.
Title A strategy to assess river restoration success Type Journal Article
Year 2007 Publication Freshwater Biology Abbreviated Journal (up) Freshwater Biol
Volume 52 Issue 4 Pages 752-769
Keywords Plants; evaluation guidelines; socio-economics; indicators; floodplain; decision making; bioassessment; sustainability; biodiversity
Abstract 1. Elaborate restoration attempts are underway worldwide to return human-impacted rivers to more natural conditions. Assessing the outcome of river restoration projects is vital for adaptive management, evaluating project efficiency, optimising future programmes and gaining public acceptance. An important reason why assessment is often omitted is lack of appropriate guidelines.

2. Here we present guidelines for assessing river restoration success. They are based on a total of 49 indicators and 13 specific objectives elaborated for the restoration of low- to mid-order rivers in Switzerland. Most of these objectives relate to ecological attributes of rivers, but socio-economic aspects are also considered.

3. A strategy is proposed according to which a set of indicators is selected from the total of 49 indicators to ensure that indicators match restoration objectives and measures, and that the required effort for survey and analysis of indicators is appropriate to the project budget.

4. Indicator values are determined according to methods described in detailed method sheets. Restoration success is evaluated by comparing indicator values before and after restoration measures have been undertaken. To this end, values are first standardised on a dimensionless scale ranging from 0 to 1, then averaged across different indicators for a given project objective, and finally assigned to one of five overall success categories.

5. To illustrate the application of this scheme, a case study on the Thur River, Switzerland, is presented. Seven indicators were selected to meet a total of five project objectives. The project was successful in achieving ‘provision of high recreational value’, ‘lateral connectivity’ and ‘vertical connectivity’ but failed to meet the objectives ‘morphological and hydraulic variability’ and ‘near natural abundance and diversity of fauna’. Results from this assessment allowed us to identify potential deficits and gaps in the restoration project. To gain information on the sensitivity of the assessment scheme would require a set of complementary indicators for each restoration objective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0046-5070 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 662
Permanent link to this record
 

 
Author Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W.
Title Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer Type Journal Article
Year 2016 Publication Frontiers in Plant Science Abbreviated Journal (up) Front Plant Sci
Volume 7 Issue Pages 448
Keywords Plants; LED; fruit quality; lighting period; photosynthesis; plant factory; single-truss tomato; supplemental lighting; yield
Abstract Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 mumol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.
Address Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Japan; Department of Biological Sciences, Faculty of Science, The University of Tokyo, Japan
Corporate Author Thesis
Publisher Frontiers Media S.A. Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-462X ISBN Medium
Area Expedition Conference
Notes PMID:27092163; PMCID:PMC4823311 Approved no
Call Number IDA @ john @ Serial 1434
Permanent link to this record