toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M. url  doi
openurl 
  Title Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant Type Journal Article
  Year 2019 Publication Ecosphere Abbreviated Journal Ecosphere  
  Volume 10 Issue 1 Pages e02550  
  Keywords Ecology; Animals; Plants  
  Abstract (up) Artificial light at night (ALAN) is an increasingly important driver of global change. Lighting directly affects plants, but few studies have investigated indirect effects mediated by interacting organisms. Nocturnal Lepidoptera are globally important pollinators, and pollen transport by moths is disrupted by lighting. Many street lighting systems are being replaced with novel, energy‐efficient lighting, with unknown ecological consequences. Using the wildflower Silene latifolia, we compared pollination success and quality at experimentally lit and unlit plots, testing two major changes to street lighting technology: in lamp type, from high‐pressure sodium lamps to light‐emitting diodes, and in lighting regime, from full‐night (FN) to part‐night (PN) lighting. We predicted that lighting would reduce pollination. S. latifolia was pollinated both diurnally and nocturnally. Contrary to our predictions, flowers under FN lighting had higher pollination success than flowers under either PN lighting or unlit controls, which did not significantly differ from each other. Lamp type, lighting regime, and distance from the light all significantly affected aspects of pollination quality. These results confirm that street lighting could affect plant reproduction through indirect effects mediated by nocturnal insects, and further highlight the possibility for novel lighting technologies to mitigate the effects of ALAN on ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2150-8925 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2174  
Permanent link to this record
 

 
Author Sanders, D.; Kehoe, R.; Tiley, K.; Bennie, J.; Cruse, D.; Davies, T.W.; Frank van Veen, F.J.; Gaston, K.J. url  doi
openurl 
  Title Artificial nighttime light changes aphid-parasitoid population dynamics Type Journal Article
  Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 5 Issue Pages 15232  
  Keywords Ecology; animals; plants  
  Abstract (up) Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem.  
  Address Environment &Sustainability Institute, University of Exeter, Cornwall Campus Penryn, Cornwall, TR10 9EZ, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26472251; PMCID:PMC4607942 Approved no  
  Call Number LoNNe @ kyba @ Serial 1290  
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G. url  doi
openurl 
  Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
  Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 21 Issue 2 Pages  
  Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity  
  Abstract (up) Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.  
  Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31936535 Approved no  
  Call Number GFZ @ kyba @ Serial 2818  
Permanent link to this record
 

 
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J. url  doi
openurl 
  Title Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 2015 Issue Pages 20140131  
  Keywords Ecology; light pollution; photopollution; artificial light at night; biotic interactions; community-level; bottom-up effects; grasslands; herbivores; invertebrates; pea aphid; Acyrthosiphon pisum; plants; insects  
  Abstract (up) Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; k.j.gaston@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1128  
Permanent link to this record
 

 
Author Lawrence, B.K.; Fehr, W.R. url  doi
openurl 
  Title Reproductive Response of Soybeans to Night Interruption1 Type Journal Article
  Year 1981 Publication Crop Science Abbreviated Journal  
  Volume 21 Issue 5 Pages 755  
  Keywords Plants  
  Abstract (up) Artificial lights may be used to delay flowering of soybean [Glycine max (L.) Merr.] cultivars. Previous research has suggested that night interruption imposed every other night would delay flowering as much as every-night interruption. Our objective was to evaluate the reproductive development of cultivars when exposed to night interruption every night compared with exposure every other night. One cultivar of each Maturity Group 00 through V was grown in the field at Ames, Iowa during 1978 and 1979. The four light treatments imposed every night or every other night included illumination with incandescent light from sunset to sunrise, 2300 to 0030 hours, 0030 to 0200 hours, or 0200 to 0330 hours. Control plots were not exposed to artificial light.

The average number of days that reproductive development was delayed beyond the control was twice as great for the every-night treatments as for the every-other-night treatments. Illumination from sunset to sunrise delayed reproductive development significantly more than the treatments of night interruption for 1.5 hours. Night interruption near the end of the dark period (0200 to 0330 hours) delayed reproductive development more than the earlier interruptions.

The results did not support the hypothesis that light treatments every other night would delay reproductive development as much as every-night interruptions. The lighting regime needed to delay reproductive development will depend on the photoperiod requirements of the cultivars and duration of the delay that is desired.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-183X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: