toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Patel, J.S.; Radetsky, L.; Rea, M.S. url  doi
openurl 
  Title The Value of Red Light at Night for Increasing Basil Yield Type Journal Article
  Year 2018 Publication Canadian Journal of Plant Science Abbreviated Journal Can. J. Plant Sci.  
  Volume 98 Issue 6 Pages 1321-1330  
  Keywords Plants  
  Abstract (up) Sweet basil (<i>Ocimum basilicum L.</i>) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by <i>Peronospora belbahrii</i>. Nighttime exposure to red light has been shown to inhibit sporulation of <i>P. belbahrii</i>. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (LEDs; λ<sub>max</sub> = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density (PPFD) of 60 µmol m<sup>-2</sup> s<sup>-1</sup> during the otherwise dark night for 10 hours (from 20:00 to 06:00). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight, compared to plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1955  
Permanent link to this record
 

 
Author Schroer, S.; Hölker, F. url  doi
isbn  openurl
  Title Impact of Lighting on Flora and Fauna Type Book Chapter
  Year 2016 Publication Handbook of Advanced Lighting Technology Abbreviated Journal  
  Volume Issue Pages 1-33  
  Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review  
  Abstract (up) Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.  
  Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-00295-8 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1470  
Permanent link to this record
 

 
Author Singhal, R. K., Kumar, V., Kumar, M., & Bose, B. url  openurl
  Title Responses of different light intensities and continue light during dark period on rice (Oryza sativa L.) seed germination and seedling development Type Journal Article
  Year 2019 Publication Journal of Pharmacognosy and Phytochemistry Abbreviated Journal  
  Volume 8 Issue 4 Pages 2602-2609  
  Keywords Plants  
  Abstract (up) Temperature, humidity and moisture content are the important abiotic component regulating seedling establishment in plants including rice. Light factor intensity and duration are also important environmental factors regulating rice growth and development. In the growth and development of rice crop germination followed by seedling establishment is the foremost and very important growth stages. Light component such as intensity, direction and duration are the regulating factor for several physiological, biochemical and molecular processes in plants. To consider these facts, in the present piece of work rice seed of HUR-105 grown under different light regimes, from T1 (2000 lux for 12 h during day time + 12 h dark period) (lower light intensity), T2 (4000 lux for 12 h during day time+ 12 h dark period), T3 (6000 lux for 12 h during day time + 12 h dark period) (moderate), T4 (9000 lux for 12 h during day time + 12 h dark period) (optimum) and to T5 (9000 lux for 12h during day time + 200 lux for 12 h during night time). Germination, seedling growth and biochemical parameters were observed at different time intervals. It was observed that germination %, germination index (GI), germination rate index (GRI), coefficient of velocity of germination (CVG), mean germination rate (MGR), seedling vigour (SV), α-amylase activity and soluble sugar content significantly reduced in both the treatments T1 and T5. Further, the mean time germination and insoluble sugar content were increased in T1 and T5 treatment. The present experiment concluded that both lower light intensity (T1) and addition of low light during dark period (considered as night light pollution) causes stress condition and reduce germination and seedling establishment potential of rice crop.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2738  
Permanent link to this record
 

 
Author Supronowicz, R.; Fryc, I. url  doi
openurl 
  Title Urban park lighting as a source of botanical light pollution Type Journal Article
  Year 2019 Publication Photonics Letters of Poland Abbreviated Journal Photon.Lett.PL  
  Volume 11 Issue 3 Pages 90  
  Keywords Plants  
  Abstract (up) That paper describesthe relative impact of anartificial lighting deviceon botanical light pollution, consideringspectral power distribution (SPD in the lighting area. This impact is described by the Relative-to-Moon Photosynthesis Index (RMPI)and Induced Phytochrome Index (IPr). We found that in the case when lighting is realized by using LED luminaires instead of high-pressure sodium (HPS) or metal halide (MH) lamps, the influence of spectral light on plant vegetation process amplifies. Additionally,our research shows that estimating botanical light pollution on the basis of lamps’CCT is not the best method and that using SPD is better for this purpose.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2080-2242 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2691  
Permanent link to this record
 

 
Author Ehlert, K.; Piepenbring, M.; Kollar, A. url  doi
openurl 
  Title Ascospore release in apple scab underlies infrared sensation Type Journal Article
  Year 2017 Publication Fungal Biology Abbreviated Journal Fungal Biol  
  Volume 121 Issue 12 Pages 1054-1062  
  Keywords Plants  
  Abstract (up) The agent of apple scab disease (Venturia inaequalis) is the most common pathogen in apple cultivation. Its ascospores are released in spring, mainly during daylight hours and triggered by rain events. To investigate the causes of diurnal rhythm of ascospore dissemination of the apple scab fungus ascospore releases were examined continuously with spore traps in the orchard and with laboratory assays. One of the spore traps was illuminated at night with different light sources in each year during 2011-2015. The laboratory assays were performed with different light sources with varying wavelengths and intensities. In field and laboratory conditions only light including infrared radiation stimulated ascospore release, but not with light in the visible spectrum only. Artificial illumination during night was correlated with an increase of up to 46 % of ascospores released overnight in the field. We proved that infrared radiation induces V. inaequalis to release its spores. This is the first report in which spore discharge could be stimulated during night under field conditions.  
  Address Julius Kuehn-Institut, Federal Research Center for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Strasse 101, 69221 Dossenheim, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1878-6146 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29122177 Approved no  
  Call Number GFZ @ kyba @ Serial 2454  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: