toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. url  doi
openurl 
  Title LEDs for photons, physiology and food Type Journal Article
  Year 2018 Publication Nature Abbreviated Journal Nature  
  Volume 563 Issue 7732 Pages 493-500  
  Keywords Lighting; Human Health; Plants; Review  
  Abstract (up) Lighting based on light-emitting diodes (LEDs) not only is more energy efficient than traditional lighting, but also enables improved performance and control. The colour, intensity and distribution of light can now be controlled with unprecedented precision, enabling light to be used both as a signal for specific physiological responses in humans and plants, and as an efficient fuel for fresh food production. Here we show how a broad and improved understanding of the physiological responses to light will facilitate greater energy savings and provide health and productivity benefits that have not previously been associated with lighting.  
  Address Utah State University, Logan, UT, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30464269 Approved no  
  Call Number GFZ @ kyba @ Serial 2110  
Permanent link to this record
 

 
Author Nelson, J.A.; Bugbee, B. url  doi
openurl 
  Title Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures Type Journal Article
  Year 2014 Publication PloS one Abbreviated Journal PLoS One  
  Volume 9 Issue 6 Pages e99010  
  Keywords Plants  
  Abstract (up) Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.  
  Address Crop Physiology Laboratory, Department of Plant Soils and Climate, Utah State University, Logan, Utah, United States of America  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24905835; PMCID:PMC4048233 Approved no  
  Call Number GFZ @ kyba @ Serial 2233  
Permanent link to this record
 

 
Author Shillo, R., & Halevy, A. H. url  openurl
  Title Interaction of photoperiod and temperature in flowering-control of Gypsophila paniculata L Type Journal Article
  Year 1982 Publication Scientia Horticulturae Abbreviated Journal  
  Volume 16 Issue 4 Pages 385-393  
  Keywords Plants  
  Abstract (up) Long day promotes flowering of Gysophila paniculata L cultivar ‘Bristol Fairy’. Repeated treatments with GA3 or GA4 + 7 in short days did not promote flowering. The long photoperiod is effective only at relatively high temperatures. At night temperatures below 12°C, the plants remain vegetative even in long days. Efficient artificial lighting is from incandescent lamps at 60–100 lux. Fluorescent lighting (Cool-White) is not effective. Lighting of 4 hours as a night-break or at the end of the night were equally effective, but 4 hours lighting as a day-extension was less effective. Whole-night lighting promoted flowering more than any of the 4-hour lighting regimes. Cyclic lighting of one third light in each cycle promoted flowering to the same extent as continuous lighting. Light intensity during the day has a decisive effect on flower production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2370  
Permanent link to this record
 

 
Author Rydin, C; Bolinder, K url  doi
openurl 
  Title Moonlight pollination in the gymnosperm Ephedra (Gnetales) Type Journal Article
  Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.  
  Volume 11 Issue 4 Pages 20140993  
  Keywords Plants; anemophily; entomophily; lunar phases; nocturnal insects; lunar cycle; light at night; Ephedra; Ephedra distachya; pollination  
  Abstract (up) Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.  
  Address Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1143  
Permanent link to this record
 

 
Author Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. url  doi
openurl 
  Title Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce ( Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes Type Journal Article
  Year 2018 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany  
  Volume 153 Issue Pages 63-71  
  Keywords Plants  
  Abstract (up) Most leafy vegetables can accumulate large amounts of nitrate, which are often associated with harmful effects on human health. Nitrate assimilation in plants is determined by various growth conditions, especially light conditions including light intensity, light duration and light spectral composition. Red and blue light are the most important since both drive photosynthesis. Increasingly, recent evidence demonstrates a role for green light in the regulation of plant growth and development by regulating the expression of some specific genes. However, the effect of green light on nitrate assimilation has been underestimated. In this study, lettuce (Lactuca sativa L. cv. Butterhead) was treated with continuous light (CL) for 48 h by combined red and blue light-emitting diodes (LEDs) supplemented with or without green LED in an environment-controlled growth chamber. The results showed that nitrate reductase (NR) and nitrite reductase (NiR) related-gene expression and nitrate assimilation enzyme activities were affected by light spectral composition and light duration of CL. Adding green light to red and blue light promoted NR and NiR expressions at 24 h, subsequently, it reduced expression of these genes during CL. Compared with red and blue LEDs, green light supplementation significantly increased NR, NiR, glutamate synthase (GOGAT) and glutamine synthetase (GS) activities. Green-light supplementation under red and blue light was more efficient in promoting nutritional values by maintaining high net photosynthetic rates (Pn) and maximal photochemical efficiency (Fv/Fm).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-8472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1915  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: