toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. url  doi
openurl 
  Title Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes Type Journal Article
  Year 2018 Publication Physiologia Plantarum Abbreviated Journal Physiol Plant  
  Volume 164 Issue 2 Pages 226-240  
  Keywords Plants  
  Abstract (up) Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn ), maximal photochemical efficiency (Fv /Fm ), electron transport for carbon fixation (JPSII ) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2 O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.  
  Address School of Animal, Rural and Environmental Science, Brackenhurst Campus, Nottingham Trent University, NG25 0QF, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9317 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29493775 Approved no  
  Call Number GFZ @ kyba @ Serial 1905  
Permanent link to this record
 

 
Author Skvareninová, J.; Tuhárska, M.; Skvarenina, J.; Babálová, D.; Slobodníková, L.; Slobodník, B.; Stredová, H.; Mindas, J. url  doi
openurl 
  Title Effects of light pollution on tree phenology in the urban environment Type Journal Article
  Year 2017 Publication Moravian Geographical Reports Abbreviated Journal  
  Volume 25 Issue 4 Pages  
  Keywords Plants  
  Abstract (up) Research on urban climates has been an important topic in recent years, given the growing number of city inhabitants and significant influences of climate on health. Nevertheless, far less research has focused on the impacts of light pollution, not only on humans, but also on plants and animals in the landscape. This paper reports a study measuring the intensity of light pollution and its impact on the autumn phenological phases of tree species in the town of Zvolen (Slovakia). The research was carried out at two housing estates and in the central part of the town in the period 2013–2016. The intensity of ambient nocturnal light at 18 measurement points was greater under cloudy weather than in clear weather conditions. Comparison with the ecological standard for Slovakia showed that average night light values in the town centre and in the housing estate with an older type of public lighting, exceeded the threshold value by 5 lux. Two tree species, sycamore maple (Acer pseudoplatanus L.) and staghorn sumac (Rhus typhina L.), demonstrated sensitivity to light pollution. The average onset of the autumn phenophases in the crown parts situated next to the light sources was delayed by 13 to 22 days, and their duration was prolonged by 6 to 9 days. There are three major results: (i) the effects of light pollution on organisms in the urban environment are documented; (ii) the results provide support for a theoretical and practical basis for better urban planning policies to mitigate light pollution effects on organisms; and (iii) some limits of the use of plant phenology as a bioindicator of climate change are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1210-8812 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1799  
Permanent link to this record
 

 
Author Matzke, E. B. url  openurl
  Title The Effect of Street Lights in Delaying Leaf-Fall in Certain Trees Type Journal Article
  Year 1936 Publication American Journal of Botany Abbreviated Journal Amer. J. of Botany  
  Volume 23 Issue 6 Pages 446-452  
  Keywords Plants; trees; Carolina poplar; Populus canadensis; London plane; Platanus acerifolia; sycamore; Platanus occidentalis; crack willow; Salix fragilis; New York; New York City  
  Abstract (up) Street lights in the City of New York cause a retention of the leaves of certain trees: Carolina poplar (Populus canadensis), London plane (Platanus acerifolia), sycamore (Platanus occidentalis), and crack willow (Salix fragilis). Illuminated portions of a tree retain their leaves; shaded portions of the same tree do not. One side of a tree, or the lower part, may thus have numerous leaves, while the other side, and the upper part, may be entirely devoid of foliage. A relatively weak light, at a distance of as much as 45 feet from the tip of the nearest branch, may cause retention of numerous leaves. Light intensity as low as 1 foot candle, or less, may be effective. Some leaves may be retained at least a month, others more than that, beyond the normal season. The orientation of the light with respect to the tree – i.e., north, east, south, and west – is not significant. In Populus canadensis all of the leaves ultimately fall, abscission apparently taking place at the base of the petiole. In Platanus acerifolia and Platanus occidentalis some of the leaves are retained until killed by low temperature; then some of them break off above the base of the petiole. Leaves of the Populus and Platanus species discussed remain green unusually long when receiving additional illumination. Leaves of these same trees do not emerge from the buds earlier in the spring as a result of the additional illumination.  
  Address n/a  
  Corporate Author Thesis  
  Publisher JSTOR Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9122 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1394  
Permanent link to this record
 

 
Author Shor, E.; Potavskaya, R.; Kurtz, A.; Paik, I.; Huq, E.; Green, R. url  doi
openurl 
  Title PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent Type Journal Article
  Year 2018 Publication Genes Abbreviated Journal Genes (Basel)  
  Volume 9 Issue 12 Pages  
  Keywords Plants  
  Abstract (up) Studies are increasingly showing that metabolic and circadian (~24 h) pathways are strongly interconnected, with the circadian system regulating the metabolic state of the cell, and metabolic products feeding back to entrain the oscillator. In plants, probably the most significant impact of the circadian system on metabolism is in its reciprocal regulation of photosynthesis; however, the pathways by which this occurs are still poorly understood. We have previously shown that members of the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR (PIF) family are involved in the photosynthate entrainment of the circadian oscillator. In this paper, using Arabidopsis mutants and overexpression lines, we examine how temperature and light quality affect PIF-mediated sucrose signaling to the oscillator and examine the contributions of individual PIF members. Our results also show that the quality of light is important for PIF signaling, with red and blue lights having the opposite effects, and that temperature affects PIF-mediated sucrose signaling. We propose the light sensitivity of PIF-mediated sucrose entrainment of the oscillator may be important in enabling plants to distinguish between sucrose produced de novo from photosynthesis during the day and the sucrose products of starch degradation at the end of the night.  
  Address Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem 91904, Israel. rgreen@mail.huji.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4425 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30551669; PMCID:PMC6316277 Approved no  
  Call Number GFZ @ kyba @ Serial 2155  
Permanent link to this record
 

 
Author Eng, R.Y.N.; Tsujita, M.J.; Grodzinski, B. url  doi
openurl 
  Title The effects of supplementary HPS lighting and carbon dioxide enrichment on the vegetative growth, nutritional status and flowering characteristics ofChrysanthemum morifoliumRamat Type Journal Article
  Year 1985 Publication Journal of Horticultural Science Abbreviated Journal Journal of Horticultural Science  
  Volume 60 Issue 3 Pages 389-395  
  Keywords Plants  
  Abstract (up) Supplementary high pressure sodium (HPS) lighting (140 µmol m−2s−1) and CO2 enrichment (1375 µl l−1) improved the vegetative growth of Chrysanthemum morifolium cv Dramatic by increases in stem length, stem diameter, root weight ratio, dry weight, relative growth and net assimilation rates. Three-week-old chrysanthemums grown under CO2 enrichment and HPS lighting had lower leaf weight and stem weight ratios as well as lower foliar nutrient content than those grown under ambient CO2 and natural light. Plants grown on to maturity under CO2 enrichment and supplementary HPS lighting had the longest stem lengths, the most flowers and greatest increase in dry weight. The combination of both additional light and CO2 was superior to either factor used alone. With 24 h HPS supplementary lighting CO2 enrichment was most effective in improving vegetative growth and flower quality when applied during the daytime. Night CO2 enrichment was not commercially beneficial at the light levels employed in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1589 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2373  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: