toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grubisic, M.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. url  doi
openurl 
  Title A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch Type Journal Article
  Year 2018 Publication Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume 240 Issue Pages 630-638  
  Keywords Plants; Ecology  
  Abstract (up) The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1900  
Permanent link to this record
 

 
Author Borges, R.M. openurl 
  Title Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services Type Journal Article
  Year 2018 Publication Yale Journal of Biology and Medicine Abbreviated Journal  
  Volume 91 Issue 1 Pages 33-42  
  Keywords Plants; Animals  
  Abstract (up) The night is a special niche characterized by dim light, lower temperatures, and higher humidity compared to the day. Several animals have made the transition from the day into the night and have acquired unique adaptations to cope with the challenges of performing nocturnal activities. Several plant species have opted to bloom at night, possibly as a response to aridity to prevent excessive water loss through evapotranspiration since flowering is often a water-demanding process, or to protect pollen from heat stress. Nocturnal pollinators have visual adaptations to function under dim light conditions but may also trade off vision against olfaction when they are dependent on nectar-rewarding and scented flowers. Nocturnal pollinators may use CO2 and humidity cues emanating from freshly-opened flowers as indicators of nectar-rich resources. Some endothermic nocturnal insect pollinators are attracted to thermogenic flowers within which they remain to obtain heat as a reward to increase their energy budget. This review focuses on mechanisms that pollinators use to find flowers at night, and the signals that nocturnally blooming flowers may employ to attract pollinators under dim light conditions. It also indicates gaps in our knowledge. While millions of years of evolutionary time have given pollinators and plants solutions to the delivery of pollination services and to the offering of appropriate rewards, this history of successful evolution is being threatened by artificial light at night. Excessive and inappropriate illumination associated with anthropogenic activities has resulted in significant light pollution which serves to undermine life processes governed by dim light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1832  
Permanent link to this record
 

 
Author Caffarra, A.; Donnelly, A. url  doi
openurl 
  Title The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst Type Journal Article
  Year 2011 Publication International Journal of Biometeorology Abbreviated Journal Int J Biometeorol  
  Volume 55 Issue 5 Pages 711-721  
  Keywords Plants  
  Abstract (up) The process of adaptation is the result of stabilising selection caused by two opposite forces: protection against an unfavourable season (survival adaptation), and effective use of growing resources (capacity adaptation). As plant species have evolved different life strategies based on different trade offs between survival and capacity adaptations, different phenological responses are also expected among species. The aim of this study was to compare budburst responses of two opportunistic species (Betula pubescens, and Salix x smithiana) with that of two long-lived, late successional species (Fagus sylvatica and Tilia cordata) and consider their ecological significance. Thus, we performed a series of experiments whereby temperature and photoperiod were manipulated during dormancy. T. cordata and F. sylvatica showed low rates of budburst, high chilling requirements and responsiveness to light intensity, while B. pubescens and S. x smithiana had high rates of budburst, low chilling requirements and were not affected by light intensity. In addition, budburst in B. pubescens and S. x smithiana was more responsive to high forcing temperatures than in T. cordata and F. sylvatica. These results suggest that the timing of growth onset in B. pubescens and S. x smithiana (opportunistic) is regulated through a less conservative mechanism than in T. cordata and F. sylvatica (long-lived, late successional), and that these species trade a higher risk of frost damage for the opportunity of vigorous growth at the beginning of spring, before canopy closure. This information should be considered when assessing the impacts of climate change on vegetation or developing phenological models.  
  Address Department of Botany, School of Natural Sciences, Trinity College Dublin, Ireland. amelia.caffarra@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7128 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21113629 Approved no  
  Call Number LoNNe @ kyba @ Serial 1675  
Permanent link to this record
 

 
Author Gómez, C.; Mitchell, C.A. url  openurl
  Title Physiological and Productivity Responses of High-wire Tomato as Affected by Supplemental Light Source and Distribution within the Canopy Type Journal Article
  Year 2016 Publication Journal of the American Society for Horticultural Science Abbreviated Journal J. Amer. Soc. Hort. Sci.  
  Volume 141 Issue 2 Pages 196-208  
  Keywords Plants; tomato; LED; LED lighting; Solanum lycopersicum; intracanopy lighting; greenhouses; intracanopy supplemental lighting; daily light integral  
  Abstract (up) The relative coolness-to-touch of light-emitting diodes (LEDs) has enabled commercial implementation of intracanopy lighting (ICL) in the greenhouse. Intracanopy lighting, which refers to the strategy of lighting along the side or from within the foliar canopy, can increase canopy photosynthetic activity, but physiological and productivity responses of high-wire greenhouse tomato (Solanum lycopersicum) to intracanopy supplemental lighting (SL) still are not yet fully understood. Two consecutive production experiments were conducted across seasons in a glass-glazed greenhouse located in a midnorthern, continental climate [lat. 40°N (West Lafayette, IN)]. Plants were grown from winter-to-summer [increasing solar daily light integral (DLI)] and from summer-to-winter (decreasing solar DLI) to compare three SL strategies for high-wire tomato production across changing solar DLIs: top lighting with high-pressure sodium lamps (HPS) vs. intracanopy LED vertical towers vs. hybrid SL (HPS + horizontal ICL-LEDs). A control treatment also was included for which no SL was provided. Supplemental DLI for each experimental period was adjusted monthly, to complement seasonal changes in sunlight, aiming to approach a target total DLI of 25 mol·m‒2·d‒1 during fruit set. Harvest parameters (total fruit fresh weight, number of fruit harvested, and average cluster fresh weight), tissue temperature, chlorophyll fluorescence, and stomatal conductance (gS) were unaffected by SL treatment in both experiments. Among the physiological parameters evaluated, CO2 assimilation measured under light-saturating conditions, light-limited quantum-use efficiency, and maximum gross CO2 assimilation (Amax) proved to be good indicators of how ICL reduces the top-to-bottom decline in leaf photosynthetic activity otherwise measured with top lighting only (HPS-SL or solar). Although SL generally increased fruit yield relative to control, lack of SL treatment differences among harvest parameters indicates that higher crop photosynthetic activity did not increase fruit yield. Compared with control, intracanopy SL increased yield to the same extent as top SL, but the remaining photoassimilate from ICL most likely was partitioned to maintain nonharvested, vegetative plant parts as well.  
  Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010  
  Corporate Author Thesis  
  Publisher American Society for Horticultural Science Place of Publication Editor  
  Language Engligh Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-1062 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1431  
Permanent link to this record
 

 
Author PENG, Y., ZHANG, H., GUO, K., DING, Y., WANG, X. url  doi
openurl 
  Title The Safe Distance Between Road Lighting Fixtures and Street Trees. Type Journal Article
  Year 2019 Publication Journal of Landscape Research Abbreviated Journal  
  Volume 11 Issue 2 Pages 41-43  
  Keywords Plants; Planning  
  Abstract (up) The road lighting system and the road greening system, which are mutually interrelated and independent, are two important parts in the urban road environment Unreasonable road lighting is easy to induce light pollution and has a great negative impact on the physiology and growth of garden plants in the urban green space. In this paper; 21 kinds of common tree species in the urban green space of Zhengzhou were selected as the research object, and the photosynthetic physiological parameters of landscape trees under the TKD light source were observed using LI-6400 Photosynthesis System. This paper attempted to find the critical point for initiating photosynthesis of different types of tree species under a certain light source and then calculated the safe distance between lighting fixtures and landscape trees. The results showed that road lighting interfered with the photosynthetic physiological activities of the surveyed trees, affecting the normal dormancy of the plants at night; the sensitivity of different tree species to night lighting was different, and there were some differences in the light compensation points, so the corresponding safe distance was also different It is hoped that this study can provide a valuable reference and scientific basis for urban toad greening and lighting design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2648  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: