|   | 
Details
   web
Records
Author Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M.
Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
Year 2011 Publication Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol
Volume 62 Issue Pages 335-364
Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light
Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
Address (up) Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-5008 ISBN Medium
Area Expedition Conference
Notes PMID:21526969 Approved no
Call Number IDA @ john @ Serial 341
Permanent link to this record
 

 
Author Dzakovich, M.; Gómez, C.; Mitchell, C.
Title Tomatoes Grown with Light-emitting Diodes or High-pressure Sodium Supplemental Lights have Similar Fruit-quality Attributes Type Journal Article
Year 2015 Publication HortScience Abbreviated Journal HortScience
Volume 50 Issue 10 Pages 1498-1502
Keywords Plants; greenhouse tomato production; HPS; LED; physicochemical testing; sensory panels; Solanum lycopersium; tomato; high-pressure sodium; agriculture; horticulture; light-emitting diode
Abstract Light-emitting diodes (LEDs) are an attractive alternative to high-pressure sodium (HPS) lamps for plant growth because of their energy-saving potential. However, the effects of supplementing broad-waveband solar light with narrow-waveband LED light on the sensory attributes of greenhouse-grown tomatoes (Solanum lycopersicum) are largely unknown. Three separate studies investigating the effect of supplemental light quantity and quality on physicochemical and organoleptic properties of greenhouse-grown tomato fruit were conducted over 4- or 5-month intervals during 2012 and 2013. Tomato cultivars Success, Komeett, and Rebelski were grown hydroponically within a high-wire trellising system in a glass-glazed greenhouse. Chromacity, Brix, titratable acidity, electrical conductivity (EC), and pH measurements of fruit extracts indicated plant response differences between lighting treatments. In sensory panels, tasters ranked tomatoes for color, acidity, and sweetness using an objective scale, whereas color, aroma, texture, sweetness, acidity, aftertaste, and overall approval were ranked using hedonic scales. By collecting both physicochemical as well as sensory data, this study was able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality. Sensory panels indicated that statistically significant physicochemical differences were not noticeable to tasters and that tasters engaged in blind testing could not discern between tomatoes from different supplemental lighting treatments or unsupplemented controls. Growers interested in reducing supplemental lighting energy consumption by using intracanopy LED (IC-LED) supplemental lighting need not be concerned that the quality of their tomato fruits will be negatively affected by narrow-band supplemental radiation at the intensities and wavelengths used in this study.
Address (up) Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010
Corporate Author Thesis
Publisher American Society for Horticultural Science Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-5345 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1301
Permanent link to this record
 

 
Author Gómez, C.; Mitchell, C.A.
Title Physiological and Productivity Responses of High-wire Tomato as Affected by Supplemental Light Source and Distribution within the Canopy Type Journal Article
Year 2016 Publication Journal of the American Society for Horticultural Science Abbreviated Journal J. Amer. Soc. Hort. Sci.
Volume 141 Issue 2 Pages 196-208
Keywords Plants; tomato; LED; LED lighting; Solanum lycopersicum; intracanopy lighting; greenhouses; intracanopy supplemental lighting; daily light integral
Abstract The relative coolness-to-touch of light-emitting diodes (LEDs) has enabled commercial implementation of intracanopy lighting (ICL) in the greenhouse. Intracanopy lighting, which refers to the strategy of lighting along the side or from within the foliar canopy, can increase canopy photosynthetic activity, but physiological and productivity responses of high-wire greenhouse tomato (Solanum lycopersicum) to intracanopy supplemental lighting (SL) still are not yet fully understood. Two consecutive production experiments were conducted across seasons in a glass-glazed greenhouse located in a midnorthern, continental climate [lat. 40°N (West Lafayette, IN)]. Plants were grown from winter-to-summer [increasing solar daily light integral (DLI)] and from summer-to-winter (decreasing solar DLI) to compare three SL strategies for high-wire tomato production across changing solar DLIs: top lighting with high-pressure sodium lamps (HPS) vs. intracanopy LED vertical towers vs. hybrid SL (HPS + horizontal ICL-LEDs). A control treatment also was included for which no SL was provided. Supplemental DLI for each experimental period was adjusted monthly, to complement seasonal changes in sunlight, aiming to approach a target total DLI of 25 mol·m‒2·d‒1 during fruit set. Harvest parameters (total fruit fresh weight, number of fruit harvested, and average cluster fresh weight), tissue temperature, chlorophyll fluorescence, and stomatal conductance (gS) were unaffected by SL treatment in both experiments. Among the physiological parameters evaluated, CO2 assimilation measured under light-saturating conditions, light-limited quantum-use efficiency, and maximum gross CO2 assimilation (Amax) proved to be good indicators of how ICL reduces the top-to-bottom decline in leaf photosynthetic activity otherwise measured with top lighting only (HPS-SL or solar). Although SL generally increased fruit yield relative to control, lack of SL treatment differences among harvest parameters indicates that higher crop photosynthetic activity did not increase fruit yield. Compared with control, intracanopy SL increased yield to the same extent as top SL, but the remaining photoassimilate from ICL most likely was partitioned to maintain nonharvested, vegetative plant parts as well.
Address (up) Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010
Corporate Author Thesis
Publisher American Society for Horticultural Science Place of Publication Editor
Language Engligh Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-1062 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1431
Permanent link to this record
 

 
Author Joo, Y.; Fragoso, V.; Yon, F.; Baldwin, I.T.; Kim, S.-G.
Title The circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature Type Journal Article
Year 2017 Publication Journal of Integrative Plant Biology Abbreviated Journal J Integr Plant Biol
Volume 59 Issue 8 Pages 572-587
Keywords plants
Abstract The circadian clock is known to increase plant growth and fitness, and thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light-and dark-adapted photosynthetic rates (Ac ) throughout a 24 h day in empty vector-transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA-and NaPhyB1-silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field. irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac . Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark-adapted plants at night; irLHY plants lost these time-dependent responses. The role of NaLHY in gating photosynthesis is independent of the light-dependent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light-mediated in native tobacco.
Address (up) Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Str. 8, D-07745, Jena, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1672-9072 ISBN Medium
Area Expedition Conference
Notes PMID:28429400 Approved no
Call Number LoNNe @ kyba @ Serial 1657
Permanent link to this record
 

 
Author Tavhare, S.D.; Nishteswar, K.; Shukla, V.J.
Title Influence of lunar cycles on growth of Ashwagandha (Withania somnifera [L.] Dunal) Type Journal Article
Year 2015 Publication Ayu Abbreviated Journal Ayu
Volume 36 Issue 3 Pages 258-264
Keywords Plants; Moonlight
Abstract INTRODUCTION: Ayurvedic classics have advocated to collect the medicinal plants according to part used and seasons in order to get desired pharmacological action and therapeutic benefits. The logic behind this principle is being validated by recent researches. AIM: To analyze the influence of lunar cycles on growth of Ashwagandha in Shishira and Greeshma Ritu (winter and summer season). MATERIALS AND METHODS: Fourteen small crops of Ashwagandha of average size 10 cm were collected on October 7, 2013, from institute campus and then replantation was done at Charaka Herbal Garden, Gujarat Ayurved University, Jamnagar in an area of 60 cm x 60 cm (l x b). No fertilizers or pesticides were used. The plants were watered daily and plants were uprooted as per lunar cycles for analysis. Eight samples were collected and observed during Shishira and Greeshma season on Pournima (full moon) and Amavasya (new moon) days. The measurements were taken thrice and average values were taken into consideration for study purpose. The variations in morphological characteristics such as length, breadth, weight, and number of roots and twigs were studied through statistical procedure of principle component analysis, which makes interpretation of all possible related variables. RESULTS: Root weight (RW), pith diameter (PD) and internodal distance (ID) were found to be increased on full moon days as compared to new moon days. The maximum RW was observed during Greeshma Aashadha Pournima. CONCLUSION: The study has shown a definite influence of lunar cycles on the growth of the plant parts assessed by RW, PD, and ID that have found to be increased on full moon days as compared to new moon days.
Address (up) Department of Pharmaceutical Chemistry Laboratory, Institute for Post Graduate Teaching and Research Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0974-8520 ISBN Medium
Area Expedition Conference
Notes PMID:27313411; PMCID:PMC4895751 Approved no
Call Number LoNNe @ kyba @ Serial 1559
Permanent link to this record