|   | 
Details
   web
Records
Author Boom, M.P.; Spoelstra, K.; Biere, A.; Knop, E.; Visser, M.E.
Title Pollination and fruit infestation under artificial light at night:light colour matters Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 18389
Keywords Plants; Ecology
Abstract Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light-dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant-insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant-insect interactions in the Silene latifolia-Hadena bicruris system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by Hadena bicruris, a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by H. bicruris was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant-insect interactions differently, with direct consequences for plant fitness.
Address (up) Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands. m.visser@nioo.knaw.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33110135; PMCID:PMC7591485 Approved no
Call Number GFZ @ kyba @ Serial 3189
Permanent link to this record
 

 
Author Grenis, K.; Murphy, S.M.
Title Direct and indirect effects of light pollution on the performance of an herbivorous insect Type Journal Article
Year 2018 Publication Insect Science Abbreviated Journal Insect Sci
Volume 26 Issue 4 Pages 770-776
Keywords Animals; Plants
Abstract Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences.
Address (up) Department of Biological Sciences, University of Denver, Denver, Colorado, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1672-9609 ISBN Medium
Area Expedition Conference
Notes PMID:29425403 Approved no
Call Number GFZ @ kyba @ Serial 1865
Permanent link to this record
 

 
Author Liu, J.D.; Goodspeed, D.; Sheng, Z.; Li, B.; Yang, Y.; Kliebenstein, D.J.; Braam, J.
Title Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants Type Journal Article
Year 2015 Publication BMC Plant Biology Abbreviated Journal BMC Plant Biol
Volume 15 Issue Pages 92
Keywords Plants
Abstract BACKGROUND: The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. RESULTS: Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. CONCLUSIONS: Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.
Address (up) Department of BioSciences, Rice University, Houston, TX, 77005, USA. braam@rice.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2229 ISBN Medium
Area Expedition Conference
Notes PMID:25879637; PMCID:PMC4396971 Approved no
Call Number LoNNe @ kyba @ Serial 1458
Permanent link to this record
 

 
Author Caffarra, A.; Donnelly, A.
Title The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst Type Journal Article
Year 2011 Publication International Journal of Biometeorology Abbreviated Journal Int J Biometeorol
Volume 55 Issue 5 Pages 711-721
Keywords Plants
Abstract The process of adaptation is the result of stabilising selection caused by two opposite forces: protection against an unfavourable season (survival adaptation), and effective use of growing resources (capacity adaptation). As plant species have evolved different life strategies based on different trade offs between survival and capacity adaptations, different phenological responses are also expected among species. The aim of this study was to compare budburst responses of two opportunistic species (Betula pubescens, and Salix x smithiana) with that of two long-lived, late successional species (Fagus sylvatica and Tilia cordata) and consider their ecological significance. Thus, we performed a series of experiments whereby temperature and photoperiod were manipulated during dormancy. T. cordata and F. sylvatica showed low rates of budburst, high chilling requirements and responsiveness to light intensity, while B. pubescens and S. x smithiana had high rates of budburst, low chilling requirements and were not affected by light intensity. In addition, budburst in B. pubescens and S. x smithiana was more responsive to high forcing temperatures than in T. cordata and F. sylvatica. These results suggest that the timing of growth onset in B. pubescens and S. x smithiana (opportunistic) is regulated through a less conservative mechanism than in T. cordata and F. sylvatica (long-lived, late successional), and that these species trade a higher risk of frost damage for the opportunity of vigorous growth at the beginning of spring, before canopy closure. This information should be considered when assessing the impacts of climate change on vegetation or developing phenological models.
Address (up) Department of Botany, School of Natural Sciences, Trinity College Dublin, Ireland. amelia.caffarra@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7128 ISBN Medium
Area Expedition Conference
Notes PMID:21113629 Approved no
Call Number LoNNe @ kyba @ Serial 1675
Permanent link to this record
 

 
Author Margot, J.-L.
Title Insufficient Evidence of Purported Lunar Effect on Pollination in Ephedra Type Journal Article
Year 2015 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 30 Issue 5 Pages 454-456
Keywords Animals; Plants; Moonlight
Abstract It has been suggested that the timing of pollination in Ephedra foeminea coincides with the full moon in July. The implication is that the plant can detect the full moon through light or gravity and that this trait is an evolutionary adaptation that aids the navigation by pollinating insects. Here we show that there are insufficient data to make such a claim, and we predict that pollinations of E. foeminea do not in general coincide with the full moon.
Address (up) Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USADepartment of Physics and Astronomy, University of California, Los Angeles, California, USA jlm@astro.ucla.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:26316347 Approved no
Call Number LoNNe @ kyba @ Serial 1557
Permanent link to this record