|   | 
Details
   web
Records
Author (down) Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C.
Title Artificial light at night as a new threat to pollination Type Journal Article
Year 2017 Publication Nature Abbreviated Journal Nature
Volume 548 Issue 7666 Pages 206-209
Keywords Plants; Animals
Abstract Pollinators are declining worldwide and this has raised concerns for a parallel decline in the essential pollination service they provide to both crops and wild plants. Anthropogenic drivers linked to this decline include habitat changes, intensive agriculture, pesticides, invasive alien species, spread of pathogens and climate change1. Recently, the rapid global increase in artificial light at night has been proposed to be a new threat to terrestrial ecosystems; the consequences of this increase for ecosystem function are mostly unknown. Here we show that artificial light at night disrupts nocturnal pollination networks and has negative consequences for plant reproductive success. In artificially illuminated plant–pollinator communities, nocturnal visits to plants were reduced by 62% compared to dark areas. Notably, this resulted in an overall 13% reduction in fruit set of a focal plant even though the plant also received numerous visits by diurnal pollinators. Furthermore, by merging diurnal and nocturnal pollination sub-networks, we show that the structure of these combined networks tends to facilitate the spread of the negative consequences of disrupted nocturnal pollination to daytime pollinator communities. Our findings demonstrate that artificial light at night is a threat to pollination and that the negative effects of artificial light at night on nocturnal pollination are predicted to propagate to the diurnal community, thereby aggravating the decline of the diurnal community. We provide perspectives on the functioning of plant–pollinator communities, showing that nocturnal pollinators are not redundant to diurnal communities and increasing our understanding of the human-induced decline in pollinators and their ecosystem service.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1696
Permanent link to this record
 

 
Author (down) Kirschey, T.; Meisel, J.
Title Augen in der Landschaft Seen und Stillgewässer Nordostdeutschlands. Type Journal Article
Year 2008 Publication Naturmagazin Abbreviated Journal
Volume Issue Pages 4-11
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 661
Permanent link to this record
 

 
Author (down) Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J.
Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
Year 2018 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 59 Issue 4 Pages 529-536
Keywords Plants
Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1983
Permanent link to this record
 

 
Author (down) Karling, J.S.
Title A Preliminary Account of the Influence of Light and Temperature on Growth and Reproduction in Chara fragilis Type Journal Article
Year 1924 Publication Bulletin of the Torrey Botanical Club Abbreviated Journal Bulletin of the Torrey Botanical Club
Volume 51 Issue 12 Pages 469
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-9618 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2404
Permanent link to this record
 

 
Author (down) Kadman-Zahavi, A., & Ephrat, E.
Title The efficiency of different light sources in inducing spray carnation flowering Type Journal Article
Year 1982 Publication Scientia Horticulturae Abbreviated Journal
Volume 18 Issue Pages 159--167
Keywords Plants
Abstract Light from Gro-lux fluorescent lamps, as a 4-h night break, was found to be more effective than incandescent light in promoting spray carnation flowering under natural daylight conditions. When the illuminations were applied for 4 h in the middle of the night, the effectiveness of a certain amount of radiant energy from incandescent light was found to be the same whether applied as intermittent or as continuous illumination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2371
Permanent link to this record