|   | 
Details
   web
Records
Author (up) Skvareninová, J.; Tuhárska, M.; Skvarenina, J.; Babálová, D.; Slobodníková, L.; Slobodník, B.; Stredová, H.; Mindas, J.
Title Effects of light pollution on tree phenology in the urban environment Type Journal Article
Year 2017 Publication Moravian Geographical Reports Abbreviated Journal
Volume 25 Issue 4 Pages
Keywords Plants
Abstract Research on urban climates has been an important topic in recent years, given the growing number of city inhabitants and significant influences of climate on health. Nevertheless, far less research has focused on the impacts of light pollution, not only on humans, but also on plants and animals in the landscape. This paper reports a study measuring the intensity of light pollution and its impact on the autumn phenological phases of tree species in the town of Zvolen (Slovakia). The research was carried out at two housing estates and in the central part of the town in the period 2013–2016. The intensity of ambient nocturnal light at 18 measurement points was greater under cloudy weather than in clear weather conditions. Comparison with the ecological standard for Slovakia showed that average night light values in the town centre and in the housing estate with an older type of public lighting, exceeded the threshold value by 5 lux. Two tree species, sycamore maple (Acer pseudoplatanus L.) and staghorn sumac (Rhus typhina L.), demonstrated sensitivity to light pollution. The average onset of the autumn phenophases in the crown parts situated next to the light sources was delayed by 13 to 22 days, and their duration was prolonged by 6 to 9 days. There are three major results: (i) the effects of light pollution on organisms in the urban environment are documented; (ii) the results provide support for a theoretical and practical basis for better urban planning policies to mitigate light pollution effects on organisms; and (iii) some limits of the use of plant phenology as a bioindicator of climate change are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1210-8812 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1799
Permanent link to this record
 

 
Author (up) Solano-Lamphar, H.A.; Kocifaj, M.
Title Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants Type Journal Article
Year 2018 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage
Volume 209 Issue Pages 484-494
Keywords Plants; Skyglow
Abstract The increase of artificial light at night has a terrible impact on organisms with nightlife patterns such as a migration, nutrition, reproduction and collective interaction. Plants are not free from this issue as they have life cycle events occurring not only yearly but also daily. Such events relate to daytime variations with seasons in which the flowers of deciduous trees bloom and the leaves of certain trees fall off and change color. A response of plants to artificial light at night still remains poorly quantified; but recent scientific research suggest that skyglow can disturb plants processes. For instance, low levels of light affect deciduous plants, which shed their leaves as days grow short in the fall. In this paper we model skyglow considering the features of artificial light that can affect natural processes of plants during the night. A case-study was conducted to mimic skyglow effects in real location for which experimental data exist. In our numerical simulations we found that some lighting systems can have an effect on plant photoreceptors and affect the phenology of plants. Specifically, the lamps that emit the electromagnetic energy in a wide spectral range can have greater effect on the photosensitivity of the plants. We believe the results obtained here will motivate botanists to make a targeted experiment to verify or challenge our findings. If the night light can change plant behavior under some conditions, it can have significant implications in botany, biology, or even agriculture.
Address ICA, Slovak Academy of Sciences, Dubravska Road 9, 845 03, Bratislava, Slovak Republic; Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, 842 48, Bratislava, Slovakia. Electronic address: kocifaj@savba.sk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes PMID:29316469 Approved no
Call Number GFZ @ kyba @ Serial 1854
Permanent link to this record
 

 
Author (up) Son, K.-H.; Jeon, Y.-M.; Oh, M.-M.
Title Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting Type Journal Article
Year 2016 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 57 Issue 6 Pages 560-572
Keywords Plants
Abstract Light-emitting diodes (LEDs) are currently undergoing rapid development as plant growth light sources in a plant factory with artificial lighting (PFAL). However, little is known about the effects of supplementary light and pulsed LEDs on plant growth, bioactive compound productions, and energy efficiency in lettuce. In this study, we aimed to determine the effects of supplementary white LEDs (study I) and pulsed LEDs (study II) on red leaf lettuce (Lactuca sativa L. ‘Sunmang’). In study I, six LED sources were used to determine the effects of supplementary white LEDs (RGB 7:1:1, 7:1:2, RWB 7:1:2, 7:2:1, 8:1:1, 8:2:0 [based on chip number] on lettuce). Fluorescent lamps were used as the control. In study II, pulsed RWB 7:2:1 LED treatments (30, 10, 1 kHz with a 50 or 75% duty ratio) were applied to lettuce. In study I, the application of red and blue fractions improved plant growth characteristics and the accumulation of antioxidant phenolic compounds, respectively. In addition, the application of green light increased plant growth, including the fresh and dry weights of shoots and roots, as well as leaf area. However, the substitution of green LEDs with white LEDs induced approximately 3.4-times higher light and energy use efficiency. In study II, the growth characteristics and photosynthesis of lettuce were affected by various combinations of duty ratio and frequency. In particular, biomass under a 1 kHz 75% duty ratio of pulsed LEDs was not significantly different from that of the control (continuous LEDs). Moreover, no significant difference in leaf photosynthetic rate was observed between any pulsed LED treatment utilizing a 75% duty ratio versus continuous LEDs. However, some pulsed LED treatments may potentially improve light and energy use efficiency compared to continuous LEDs. These results suggest that the fraction of red, blue, and green wavelengths of LEDs is an important factor for plant growth and the biosynthesis of bioactive compounds in lettuce and that supplementary white LEDs (based on a combination of red and blue LEDs) might be more suitable as a commercial lighting source than green LEDs. In addition, the use of suitable pulses of LEDs might save energy while inducing plant growth similar to that under continuous LEDs. Our findings provide important basic information for designing optimal light sources for use in a PFAL.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1615
Permanent link to this record
 

 
Author (up) Supronowicz, R.; Fryc, I.
Title Urban park lighting as a source of botanical light pollution Type Journal Article
Year 2019 Publication Photonics Letters of Poland Abbreviated Journal Photon.Lett.PL
Volume 11 Issue 3 Pages 90
Keywords Plants
Abstract That paper describesthe relative impact of anartificial lighting deviceon botanical light pollution, consideringspectral power distribution (SPD in the lighting area. This impact is described by the Relative-to-Moon Photosynthesis Index (RMPI)and Induced Phytochrome Index (IPr). We found that in the case when lighting is realized by using LED luminaires instead of high-pressure sodium (HPS) or metal halide (MH) lamps, the influence of spectral light on plant vegetation process amplifies. Additionally,our research shows that estimating botanical light pollution on the basis of lamps’CCT is not the best method and that using SPD is better for this purpose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2080-2242 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2691
Permanent link to this record
 

 
Author (up) Tavhare, S.D.; Nishteswar, K.; Shukla, V.J.
Title Influence of lunar cycles on growth of Ashwagandha (Withania somnifera [L.] Dunal) Type Journal Article
Year 2015 Publication Ayu Abbreviated Journal Ayu
Volume 36 Issue 3 Pages 258-264
Keywords Plants; Moonlight
Abstract INTRODUCTION: Ayurvedic classics have advocated to collect the medicinal plants according to part used and seasons in order to get desired pharmacological action and therapeutic benefits. The logic behind this principle is being validated by recent researches. AIM: To analyze the influence of lunar cycles on growth of Ashwagandha in Shishira and Greeshma Ritu (winter and summer season). MATERIALS AND METHODS: Fourteen small crops of Ashwagandha of average size 10 cm were collected on October 7, 2013, from institute campus and then replantation was done at Charaka Herbal Garden, Gujarat Ayurved University, Jamnagar in an area of 60 cm x 60 cm (l x b). No fertilizers or pesticides were used. The plants were watered daily and plants were uprooted as per lunar cycles for analysis. Eight samples were collected and observed during Shishira and Greeshma season on Pournima (full moon) and Amavasya (new moon) days. The measurements were taken thrice and average values were taken into consideration for study purpose. The variations in morphological characteristics such as length, breadth, weight, and number of roots and twigs were studied through statistical procedure of principle component analysis, which makes interpretation of all possible related variables. RESULTS: Root weight (RW), pith diameter (PD) and internodal distance (ID) were found to be increased on full moon days as compared to new moon days. The maximum RW was observed during Greeshma Aashadha Pournima. CONCLUSION: The study has shown a definite influence of lunar cycles on the growth of the plant parts assessed by RW, PD, and ID that have found to be increased on full moon days as compared to new moon days.
Address Department of Pharmaceutical Chemistry Laboratory, Institute for Post Graduate Teaching and Research Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0974-8520 ISBN Medium
Area Expedition Conference
Notes PMID:27313411; PMCID:PMC4895751 Approved no
Call Number LoNNe @ kyba @ Serial 1559
Permanent link to this record