toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Flowers, N.D.; Gibson, D.J. url  doi
openurl 
  Title Quantified effects of artificial versus natural nighttime lighting on the Eurasian grassesBothriochloa bladhii(Poaceae) andBothriochloa ischaemum(Poaceae) and the North American grassesPanicum virgatum(Poaceae) andSorghastrum nutans(Poaceae) Type Journal Article
  Year 2018 Publication The Journal of the Torrey Botanical Society Abbreviated Journal The Journal of the Torrey Botanical Society  
  Volume 145 Issue 2 Pages 147-155  
  Keywords Plants  
  Abstract Artificial nighttime lighting (light pollution) is increasing worldwide and may have undocumented consequences. In this study, we asked if artificial nighttime lighting affects the performance in monoculture of four grass species: the Eurasian Bothriochloa bladhii (Retz.) S.T. Blake (Poaceae), and Bothriochloa ischaemum (L.) Keng (Poaceae); and the North American Panicum virgatum (L.) (Poaceae), and Sorghastrum nutans (L.) Nash (Poaceae). We conducted a field pot experiment to test for the effects of artificial nighttime lighting and plant density on height, biomass, and leaf number. Height of the tallest individual per population was affected by separate interactions between species and density, light, and time. Final total biomass per individual biomass was increased under nighttime lighting, but more so at low density. Leaf number was increased by artificial nighttime lighting irrespective of species. These results suggest that artificial nighttime lighting may have previously undocumented influences on plant height, biomass, and leaf number within certain species. These findings warrant more in-depth studies into the role that artificial nighttime lighting can have on various plant species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-5674 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1902  
Permanent link to this record
 

 
Author (up) García-Caparros, P.; Almansa, E.M.; Barbero, F.J.; Chica, R.M.; Lao, M.T. url  doi
openurl 
  Title Fittonia verschaffeltii Response to Artificial Light Treatments: BIOMASS, Nutrient Concentrations and Physiological Changes Type Journal Article
  Year 2020 Publication Agronomy Abbreviated Journal Agronomy  
  Volume 10 Issue 1 Pages 126  
  Keywords Plants; carotenoids; chlorophyll; mineral composition; plant growth; proline; starch  
  Abstract The purpose of the present study was to evaluate the effects of different light treatments on biomass, nutrient concentrations and physiological parameters of Fittonia verschaffeltii (Lem) Van Houtte. The aim was to establish a methodology to evaluate the effect of photosynthetically active radiation (PAR) emitted by lamps on biomass. The light treatments used were tube luminescent Dunn (TL-D), tube luminescent Dunn + light emitting diodes (LEDs) and Tube luminescent 5 (TL-5). At the end of the experimental period, biomass, nutritional, biochemical, and physiological parameters were assessed. A clear reduction in total plant dry weight under TL-D + LEDs at the end of the experiment was recorded. With respect to nutrient concentration in the different organs assessed, there was no clear response under the different light treatments. The growth under TL-D lamps resulted in the highest concentration of total soluble sugars and starch in leaves, whereas the highest value of indole 3-acetic acid concentration was under TL-5 lamps. Plants grown under TL-D + LEDs showed the lowest values of chlorophyll a, b and a + b. The relationship proposed between integrated use of spectral energy (IUSE) and total dry weight (TDW) showed a good correlation with an R2 value of 0.86, therefore we recommend this methodology to discern the effects of the different spectral qualities on plant biomass.  
  Address Agronomy Department of Higher Engineering School, University of Almeria, CIAIMBITAL, Agrifood Campus of International Excellence ceiA3. Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain; pedrogar123 ( at ) hotmail.com  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4395 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 3409  
Permanent link to this record
 

 
Author (up) Gaston, K.J.; Davies, T.W.; Nedelec, S.L.; Holt, L.A. url  doi
openurl 
  Title Impacts of Artificial Light at Night on Biological Timings Type Journal Article
  Year 2017 Publication Annual Review of Ecology, Evolution, and Systematics Abbreviated Journal Annu. Rev. Ecol. Evol. Syst.  
  Volume 48 Issue 1 Pages 49-68  
  Keywords Animals; Plants; Review  
  Abstract The use of artificial lighting to illuminate the night has provided substantial benefits to humankind. It has also disrupted natural daily, seasonal, and lunar light cycles as experienced by a diversity of organisms, and hence it has also altered cues for the timings of many biological activities. Here we review the evidence for impacts of artificial nighttime lighting on these timings. Although the examples are scattered, concerning a wide variety of species and environments, the breadth of such impacts is compelling. Indeed, it seems reasonable to conclude that the vast majority of impacts of artificial nighttime lighting stem from effects on biological timings. This adds support to arguments that artificial nighttime lighting has a quite pervasive and marked impact on ecological systems, that the rapid expansion in the global extent of both direct illuminance and skyglow is thus of significant concern, and that a widespread implementation of mitigation measures is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-592X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2449  
Permanent link to this record
 

 
Author (up) Gómez, C.; Mitchell, C.A. url  openurl
  Title Physiological and Productivity Responses of High-wire Tomato as Affected by Supplemental Light Source and Distribution within the Canopy Type Journal Article
  Year 2016 Publication Journal of the American Society for Horticultural Science Abbreviated Journal J. Amer. Soc. Hort. Sci.  
  Volume 141 Issue 2 Pages 196-208  
  Keywords Plants; tomato; LED; LED lighting; Solanum lycopersicum; intracanopy lighting; greenhouses; intracanopy supplemental lighting; daily light integral  
  Abstract The relative coolness-to-touch of light-emitting diodes (LEDs) has enabled commercial implementation of intracanopy lighting (ICL) in the greenhouse. Intracanopy lighting, which refers to the strategy of lighting along the side or from within the foliar canopy, can increase canopy photosynthetic activity, but physiological and productivity responses of high-wire greenhouse tomato (Solanum lycopersicum) to intracanopy supplemental lighting (SL) still are not yet fully understood. Two consecutive production experiments were conducted across seasons in a glass-glazed greenhouse located in a midnorthern, continental climate [lat. 40°N (West Lafayette, IN)]. Plants were grown from winter-to-summer [increasing solar daily light integral (DLI)] and from summer-to-winter (decreasing solar DLI) to compare three SL strategies for high-wire tomato production across changing solar DLIs: top lighting with high-pressure sodium lamps (HPS) vs. intracanopy LED vertical towers vs. hybrid SL (HPS + horizontal ICL-LEDs). A control treatment also was included for which no SL was provided. Supplemental DLI for each experimental period was adjusted monthly, to complement seasonal changes in sunlight, aiming to approach a target total DLI of 25 mol·m‒2·d‒1 during fruit set. Harvest parameters (total fruit fresh weight, number of fruit harvested, and average cluster fresh weight), tissue temperature, chlorophyll fluorescence, and stomatal conductance (gS) were unaffected by SL treatment in both experiments. Among the physiological parameters evaluated, CO2 assimilation measured under light-saturating conditions, light-limited quantum-use efficiency, and maximum gross CO2 assimilation (Amax) proved to be good indicators of how ICL reduces the top-to-bottom decline in leaf photosynthetic activity otherwise measured with top lighting only (HPS-SL or solar). Although SL generally increased fruit yield relative to control, lack of SL treatment differences among harvest parameters indicates that higher crop photosynthetic activity did not increase fruit yield. Compared with control, intracanopy SL increased yield to the same extent as top SL, but the remaining photoassimilate from ICL most likely was partitioned to maintain nonharvested, vegetative plant parts as well.  
  Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010  
  Corporate Author Thesis  
  Publisher American Society for Horticultural Science Place of Publication Editor  
  Language Engligh Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-1062 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1431  
Permanent link to this record
 

 
Author (up) Giavi, S.; Blosch, S.; Schuster, G.; Knop, E. url  doi
openurl 
  Title Artificial light at night can modify ecosystem functioning beyond the lit area Type Journal Article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 10 Issue 1 Pages 11870  
  Keywords plants; ecology  
  Abstract Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.  
  Address Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland. eva.knop@ieu.uzh.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32681056; PMCID:PMC7368033 Approved no  
  Call Number GFZ @ kyba @ Serial 3076  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: