Records |
Author  |
Gómez, C.; Mitchell, C.A. |
Title |
Physiological and Productivity Responses of High-wire Tomato as Affected by Supplemental Light Source and Distribution within the Canopy |
Type |
Journal Article |
Year |
2016 |
Publication |
Journal of the American Society for Horticultural Science |
Abbreviated Journal |
J. Amer. Soc. Hort. Sci. |
Volume |
141 |
Issue |
2 |
Pages |
196-208 |
Keywords |
Plants; tomato; LED; LED lighting; Solanum lycopersicum; intracanopy lighting; greenhouses; intracanopy supplemental lighting; daily light integral |
Abstract |
The relative coolness-to-touch of light-emitting diodes (LEDs) has enabled commercial implementation of intracanopy lighting (ICL) in the greenhouse. Intracanopy lighting, which refers to the strategy of lighting along the side or from within the foliar canopy, can increase canopy photosynthetic activity, but physiological and productivity responses of high-wire greenhouse tomato (Solanum lycopersicum) to intracanopy supplemental lighting (SL) still are not yet fully understood. Two consecutive production experiments were conducted across seasons in a glass-glazed greenhouse located in a midnorthern, continental climate [lat. 40°N (West Lafayette, IN)]. Plants were grown from winter-to-summer [increasing solar daily light integral (DLI)] and from summer-to-winter (decreasing solar DLI) to compare three SL strategies for high-wire tomato production across changing solar DLIs: top lighting with high-pressure sodium lamps (HPS) vs. intracanopy LED vertical towers vs. hybrid SL (HPS + horizontal ICL-LEDs). A control treatment also was included for which no SL was provided. Supplemental DLI for each experimental period was adjusted monthly, to complement seasonal changes in sunlight, aiming to approach a target total DLI of 25 mol·m‒2·d‒1 during fruit set. Harvest parameters (total fruit fresh weight, number of fruit harvested, and average cluster fresh weight), tissue temperature, chlorophyll fluorescence, and stomatal conductance (gS) were unaffected by SL treatment in both experiments. Among the physiological parameters evaluated, CO2 assimilation measured under light-saturating conditions, light-limited quantum-use efficiency, and maximum gross CO2 assimilation (Amax) proved to be good indicators of how ICL reduces the top-to-bottom decline in leaf photosynthetic activity otherwise measured with top lighting only (HPS-SL or solar). Although SL generally increased fruit yield relative to control, lack of SL treatment differences among harvest parameters indicates that higher crop photosynthetic activity did not increase fruit yield. Compared with control, intracanopy SL increased yield to the same extent as top SL, but the remaining photoassimilate from ICL most likely was partitioned to maintain nonharvested, vegetative plant parts as well. |
Address |
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010 |
Corporate Author |
|
Thesis |
|
Publisher |
American Society for Horticultural Science |
Place of Publication |
|
Editor |
|
Language |
Engligh |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0003-1062 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
1431 |
Permanent link to this record |
|
|
|
Author  |
Giavi, S.; Blosch, S.; Schuster, G.; Knop, E. |
Title |
Artificial light at night can modify ecosystem functioning beyond the lit area |
Type |
Journal Article |
Year |
2020 |
Publication |
Scientific Reports |
Abbreviated Journal |
Sci Rep |
Volume |
10 |
Issue |
1 |
Pages |
11870 |
Keywords |
plants; ecology |
Abstract |
Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought. |
Address |
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland. eva.knop@ieu.uzh.ch |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:32681056; PMCID:PMC7368033 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
3076 |
Permanent link to this record |
|
|
|
Author  |
Grenis, K.; Murphy, S.M. |
Title |
Direct and indirect effects of light pollution on the performance of an herbivorous insect |
Type |
Journal Article |
Year |
2018 |
Publication |
Insect Science |
Abbreviated Journal |
Insect Sci |
Volume |
26 |
Issue |
4 |
Pages |
770-776 |
Keywords |
Animals; Plants |
Abstract |
Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences. |
Address |
Department of Biological Sciences, University of Denver, Denver, Colorado, USA |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1672-9609 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:29425403 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
1865 |
Permanent link to this record |
|
|
|
Author  |
Grubisic, M.; Singer, G.; Bruno, M.C.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. |
Title |
A pigment composition analysis reveals community changes in pre-established stream periphyton under low-level artificial light at night |
Type |
Journal Article |
Year |
2018 |
Publication |
Limnologica |
Abbreviated Journal |
|
Volume |
69 |
Issue |
|
Pages |
55-58 |
Keywords |
Plants; Ecology |
Abstract |
Freshwaters are increasingly exposed to artificial light at night (ALAN), yet the consequences for aquatic primary producers remain largely unknown. We used stream-side flumes to expose three-week-old periphyton to LED light. Pigment composition was used to infer community changes in LED-lit and control periphyton before and after three weeks of treatment. The proportion of diatoms/chrysophytes decreased (14%) and cyanobacteria increased (17%) in lit periphyton in spring. This may reduce periphyton nutritional quality in artificially-lit waters. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0075-9511 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
LoNNe @ schroer @ |
Serial |
1791 |
Permanent link to this record |
|
|
|
Author  |
Grubisic, M.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. |
Title |
A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch |
Type |
Journal Article |
Year |
2018 |
Publication |
Environmental Pollution |
Abbreviated Journal |
Environmental Pollution |
Volume |
240 |
Issue |
|
Pages |
630-638 |
Keywords |
Plants; Ecology |
Abstract |
The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1–13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0269-7491 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
1900 |
Permanent link to this record |