|   | 
Details
   web
Records
Author (up) Krause, G.H.; Weis, E.
Title Chlorophyll Fluorescence and Photosynthesis: The Basics Type Journal Article
Year 1991 Publication Annual Review of Plant Physiology and Plant Molecular Biology Abbreviated Journal Annu. Rev. Plant. Physiol. Plant. Mol. Biol.
Volume 42 Issue 1 Pages 313-349
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-2519 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 654
Permanent link to this record
 

 
Author (up) Kwak, M.; Je, S.; Cheng, H.; Seo, S.; Park, J.; Baek, S.; Khaine, I.; Lee, T.; Jang, J.; Li, Y.; Kim, H.; Lee, J.; Kim, J.; Woo, S.
Title Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting Type Journal Article
Year 2018 Publication Forests Abbreviated Journal Forests
Volume 9 Issue 2 Pages 74
Keywords Plants
Abstract Plants can undergo external fluctuations in the natural light and dark cycle. The photosynthetic apparatus needs to operate in an appropriate manner to fluctuating environmental factors, especially in light. Yellow-poplar seedlings were exposed to nighttime artificial high-pressure sodium (HPS) lighting to evaluate night light-adaptation strategies for photosynthetic apparatus fitness relative to pigment contents, photosystem II photochemistry, photosynthetic parameters, histochemical analysis of reactive oxygen species, and plant biomass. As a result, seedlings exhibited dynamic changes including the enhancement of accessory pigments, the reduction of photosystem II photochemistry, increased stomatal limitation, downregulation of photosynthesis, and the decreased aboveground and belowground biomass under artificial night lighting. Histochemical analysis with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining indicates the accumulation of in situ superoxide radicals (O2−) and hydrogen peroxide (H2O2) in leaves exposed to the lowest level of artificial night lighting compared to control. Moreover, these leaves exposed to artificial night lighting had a lower nighttime respiration rate. These results indicated that HPS lighting during the night may act as a major factor as repressors of the fitness of photosynthesis and growth patterns, via a modification of the photosynthetic light harvesting apparatus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1999-4907 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1809
Permanent link to this record
 

 
Author (up) Kwak, M.J.; Lee, S.H.; Khaine, I.; Je, S.M.; Lee, T.Y.; You, H.N.; Lee, H.K.; Jang, J.H.; Kim, I.; Woo, S.Y.
Title Stomatal movements depend on interactions between external night light cue and internal signals activated by rhythmic starch turnover and abscisic acid (ABA) levels at dawn and dusk Type Journal Article
Year 2017 Publication Acta Physiologiae Plantarum Abbreviated Journal Acta Physiol Plant
Volume 39 Issue 8 Pages
Keywords Plants
Abstract Yellow poplar (Liriodendron tulipifera L.) is a widespread hardwood tree of great ecological and economic value. Light pollution caused by excessive and indiscriminate exposure to artificial night light has emerged as a new risk factor due to its adverse effects related to energy waste, sleep disorders, anthropogenic habitat disturbance, and perceptual disorder of daily and seasonal rhythms in wildlife. However, it remains unknown how associations between artificial night light and stomatal behaviors controlled by internal signals are established. After continuous exposure to artificial light at night over 3 years, leaves in the experimental set-up were measured for stomatal movements, starch turnover, endogenous abscisic acid (ABA) levels, and chloroplast ultrastructure during the growing season. Yellow poplar showed dynamic changes in stomatal movement, starch turnover, and endogenous ABA levels in response to day/artificial night light cycle, resulting in reduction of circadian phase-shifting capacity at both dusk and dawn and normal chloroplast development as compared with natural night. Nighttime light exposure may act as a major factor for disorder of circadian and circannual rhythms as well as physiological and ultrastructural repressor in plants, via a modification of the perceived photoperiod. Our study suggests that these dynamic responses can provide advantageous insights that complement the current knowledge on light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0137-5881 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1682
Permanent link to this record
 

 
Author (up) Lang, M.; Lichtenthaler, H.K.; Sowinska, M.; Heisel, F.; Miehé, J.A.
Title Fluorescence Imaging of Water and Temperature Stress in Plant Leaves Type Journal Article
Year 1996 Publication Journal of Plant Physiology Abbreviated Journal Journal of Plant Physiology
Volume 148 Issue 5 Pages 613-621
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0176-1617 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 656
Permanent link to this record
 

 
Author (up) Lawrence, B.K.; Fehr, W.R.
Title Reproductive Response of Soybeans to Night Interruption1 Type Journal Article
Year 1981 Publication Crop Science Abbreviated Journal
Volume 21 Issue 5 Pages 755
Keywords Plants
Abstract Artificial lights may be used to delay flowering of soybean [Glycine max (L.) Merr.] cultivars. Previous research has suggested that night interruption imposed every other night would delay flowering as much as every-night interruption. Our objective was to evaluate the reproductive development of cultivars when exposed to night interruption every night compared with exposure every other night. One cultivar of each Maturity Group 00 through V was grown in the field at Ames, Iowa during 1978 and 1979. The four light treatments imposed every night or every other night included illumination with incandescent light from sunset to sunrise, 2300 to 0030 hours, 0030 to 0200 hours, or 0200 to 0330 hours. Control plots were not exposed to artificial light.

The average number of days that reproductive development was delayed beyond the control was twice as great for the every-night treatments as for the every-other-night treatments. Illumination from sunset to sunrise delayed reproductive development significantly more than the treatments of night interruption for 1.5 hours. Night interruption near the end of the dark period (0200 to 0330 hours) delayed reproductive development more than the earlier interruptions.

The results did not support the hypothesis that light treatments every other night would delay reproductive development as much as every-night interruptions. The lighting regime needed to delay reproductive development will depend on the photoperiod requirements of the cultivars and duration of the delay that is desired.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0011-183X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2367
Permanent link to this record