toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M. url  doi
openurl 
  Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
  Year 2011 Publication Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol  
  Volume 62 Issue Pages 335-364  
  Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light  
  Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.  
  Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-5008 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21526969 Approved no  
  Call Number IDA @ john @ Serial 341  
Permanent link to this record
 

 
Author (up) Chen, C. L.; Su, Y. H.; Liu, C.J.; Lee, Y.C. url  openurl
  Title Effect of Night Illumination on Growth and Yield of Soybean Type Journal Article
  Year 2009 Publication Journal of Taiwan Agricultural Research Abbreviated Journal J. of Taiwan Agricultural Res.  
  Volume Issue Pages  
  Keywords Plants; soybeans; Taiwan  
  Abstract To evaluate the potential of soybean as a crop for bio-fuel in Taiwan, field experiments were conducted in 2006 across the island, using an Australian variety ‘Leichardt’. This study was one of the field experiments at Hemei Township, Changhua County. Soybean was seeded by hand-spreading in the fall of 2006 and harvested in 2007. Results showed that seeding of soybean by hand-spreading affected uniformity of seed germination and caused high variations in yield in this field. Seed yield of soybean reached 770 kg ha-1 under good pest management and disease control. The study also showed that night illumination is an important factor affecting growth and yield of soybean. Plants growing near the roadside (within 10–20 m) were exposed to the night light, resulting in prolonged vegetative growth and delayed blossom period for about 1 to 4 weeks. Therefore, such plants suffered from poor pod filling due to low temperature stress at reproduction stage and delayed the harvest period for about 6 weeks. Nevertheless, seed yield of soybean plants exposed to the night illumination reached 1000 kg ha-1, which was slightly higher than soybean plants without exposuring to the night illumination.  
  Address chiling(at)tari.gov.tw  
  Corporate Author Thesis  
  Publisher Taiwan Agricultural Research Institute Place of Publication Editor  
  Language Chinese Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1395  
Permanent link to this record
 

 
Author (up) Clark, N.A. url  doi
openurl 
  Title The Rate of Reproduction of Lemna Major as a Function of Intensity and Duration of Light Type Journal Article
  Year 1924 Publication The Journal of Physical Chemistry Abbreviated Journal J. Phys. Chem.  
  Volume 29 Issue 8 Pages 935-941  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0092-7325 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2374  
Permanent link to this record
 

 
Author (up) Correa-Cano, M.E.; Goettsch, B.; Duffy, J.P.; Bennie, J.; Inger, R.; Gaston, K.J. url  doi
openurl 
  Title Erosion of natural darkness in the geographic ranges of cacti Type Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages 4347  
  Keywords Plants; Remote Sensing  
  Abstract Naturally dark nighttime environments are being widely eroded by the introduction of artificial light at night (ALAN). The biological impacts vary with the intensity and spectrum of ALAN, but have been documented from molecules to ecosystems. How globally severe these impacts are likely to be depends in large part on the relationship between the spatio-temporal distribution of ALAN and that of the geographic ranges of species. Here, we determine this relationship for the Cactaceae family. Using maps of the geographic ranges of cacti and nighttime stable light composite images for the period 1992 to 2012, we found that a high percentage of cactus species were experiencing ALAN within their ranges in 1992, and that this percentage had increased by 2012. For almost all cactus species (89.7%) the percentage of their geographic range that was lit increased from 1992-1996 to 2008-2012, often markedly. There was a significant negative relationship between the species richness of an area, and that of threatened species, and the level of ALAN. Cacti could be particularly sensitive to this widespread and ongoing intrusion of ALAN into their geographic ranges, especially when considering the potential for additive and synergistic interactions with the impacts of other anthropogenic pressures.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29531261; PMCID:PMC5847551 Approved no  
  Call Number GFZ @ kyba @ Serial 1824  
Permanent link to this record
 

 
Author (up) Davies, T.W.; Smyth, T. url  doi
openurl 
  Title Why artificial light at night should be a focus for global change research in the 21st century Type Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 24 Issue 3 Pages 872-882  
  Keywords Commentary; Animals; Plants  
  Abstract The environmental impacts of artificial light at night have been a rapidly growing field of global change science in recent years. Yet, light pollution has not achieved parity with other global change phenomena in the level of concern and interest it receives from the scientific community, government and nongovernmental organizations. This is despite the globally widespread, expanding and changing nature of night-time lighting and the immediacy, severity and phylogenetic breath of its impacts. In this opinion piece, we evidence 10 reasons why artificial light at night should be a focus for global change research in the 21st century. Our reasons extend beyond those concerned principally with the environment, to also include impacts on human health, culture and biodiversity conservation more generally. We conclude that the growing use of night-time lighting will continue to raise numerous ecological, human health and cultural issues, but that opportunities exist to mitigate its impacts by combining novel technologies with sound scientific evidence. The potential gains from appropriate management extend far beyond those for the environment, indeed it may play a key role in transitioning towards a more sustainable society.  
  Address Plymouth Marine Laboratory, Plymouth, Devon, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29124824 Approved no  
  Call Number GFZ @ kyba @ Serial 2054  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: