toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.; Lewis, O. url  doi
openurl 
  Title Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations Type Journal Article
  Year 2018 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol  
  Volume 55 Issue 6 Pages 2698-2706  
  Keywords Ecology; Animals; Plants  
  Abstract Globally, many ecosystems are exposed to artificial light at night. Nighttime lighting has direct biological impacts on species at all trophic levels. However, the effects of artificial light on biotic interactions remain, for the most part, to be determined.

We exposed experimental mesocosms containing combinations of grassland plants and invertebrate herbivores and predators to illumination at night over a 3‐year period to simulate conditions under different common forms of street lighting.

We demonstrate both top‐down (predation‐controlled) and bottom‐up (resource‐controlled) impacts of artificial light at night in grassland communities. The impacts on invertebrate herbivore abundance were wavelength‐dependent and mediated via other trophic levels.

White LED lighting decreased the abundance of a generalist herbivore mollusc by 55% in the presence of a visual predator, but not in its absence, while monochromatic amber light (with a peak wavelength similar to low‐pressure sodium lighting) decreased abundance of a specialist herbivore aphid (by 17%) by reducing the cover and flower abundance of its main food plant in the system. Artificial white light also significantly increased the food plant's foliar carbon to nitrogen ratio.

We conclude that exposure to artificial light at night can trigger ecological effects spanning trophic levels, and that the nature of such impacts depends on the wavelengths emitted by the lighting technology employed.

Policy implications. Our results confirm that artificial light at night, at illuminance levels similar to roadside vegetation, can have population effects mediated by both top‐down and bottom‐up effects on ecosystems. Given the increasing ubiquity of light pollution at night, these impacts may be widespread in the environment. These results underline the importance of minimizing ecosystem disruption by reducing light pollution in natural and seminatural ecosystems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8901 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (down) NC @ ehyde3 @ Serial 2086  
Permanent link to this record
 

 
Author Grubisic, M.; Singer, G.; Bruno, M.C.; van Grunsven, R.H.A.; Manfrin, A.; Monaghan, M.T.; Hölker, F. url  doi
openurl 
  Title A pigment composition analysis reveals community changes in pre-established stream periphyton under low-level artificial light at night Type Journal Article
  Year 2018 Publication Limnologica Abbreviated Journal  
  Volume 69 Issue Pages 55-58  
  Keywords Plants; Ecology  
  Abstract Freshwaters are increasingly exposed to artificial light at night (ALAN), yet the consequences for aquatic primary producers remain largely unknown. We used stream-side flumes to expose three-week-old periphyton to LED light. Pigment composition was used to infer community changes in LED-lit and control periphyton before and after three weeks of treatment. The proportion of diatoms/chrysophytes decreased (14%) and cyanobacteria increased (17%) in lit periphyton in spring. This may reduce periphyton nutritional quality in artificially-lit waters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0075-9511 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (down) LoNNe @ schroer @ Serial 1791  
Permanent link to this record
 

 
Author Apostol, K.; Dumroese, R.K.; Pinto, J.R.; Davis, A.S. url  doi
openurl 
  Title Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps Type Journal Article
  Year 2015 Publication Canadian Journal of Forest Research Abbreviated Journal Can. J. For. Res.  
  Volume 45 Issue 12 Pages 1711-1719  
  Keywords plants  
  Abstract Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure sodium (HPS) lamps on growth and physiology of Pseudotsuga menziesii (Douglas-fir) and Picea engelmannii (Engelmann spruce) seedlings. We used three latitudinal sources for each species: British Columbia (BC), Idaho (ID), and New Mexico (NM). Container seedlings were grown for 17 weeks in the greenhouse under an 18-h photoperiod of ambient solar light supplemented with light delivered from HPS or LED. In general, seedlings grown under LED had significantly greater growth, gas exchange rates, and chlorophyll contents than those seedlings grown under HPS. The growth and physiological responses to supplemental lighting varied greatly among species and seed sources. Generally, LED-grown seedlings from BC had the greatest growth and tissue dry matter followed by ID and NM populations. Compared with HPS, the significant increase in seedling growth and concomitant energy savings with LED (29% energy consumption relative to HPS) demonstrates the promise of using LED as PAR supplemental lighting for container seedling production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-5067 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (down) LoNNe @ kyba @ Serial 1250  
Permanent link to this record
 

 
Author Sanders, D.; Kehoe, R.; Tiley, K.; Bennie, J.; Cruse, D.; Davies, T.W.; Frank van Veen, F.J.; Gaston, K.J. url  doi
openurl 
  Title Artificial nighttime light changes aphid-parasitoid population dynamics Type Journal Article
  Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 5 Issue Pages 15232  
  Keywords Ecology; animals; plants  
  Abstract Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem.  
  Address Environment &Sustainability Institute, University of Exeter, Cornwall Campus Penryn, Cornwall, TR10 9EZ, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26472251; PMCID:PMC4607942 Approved no  
  Call Number (down) LoNNe @ kyba @ Serial 1290  
Permanent link to this record
 

 
Author Pocock, T. url  doi
openurl 
  Title Advanced lighting technology in controlled environment agriculture Type Journal Article
  Year 2016 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 48 Issue 1 Pages 83-94  
  Keywords Plants; Lighting  
  Abstract There is a recent awareness of the importance of plants in our everyday lives. Light is a requirement for plants and serves two important roles. It provides energy for growth and provides information that elicits plant responses including, among others, plant shape, pigmentation, nutritional content and resistance to stress. Light is paradoxical to plants, it is a requirement however, in excess it is damaging. Plants sense and interpret light through many families of photoreceptors and through the energy state of the photosynthetic apparatus. Light emitting diodes (LEDs) are quickly replacing traditional light sources for human applications, and currently there is effort being put into tailoring these technology platforms for the plant community. Potential plant sensing pathways and the spectral effects on pigmentation and photochemistry in red lettuce are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (down) LoNNe @ kyba @ Serial 1383  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: