toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Massetti, L. url  doi
openurl 
  Title Assessing the impact of street lighting on Platanus x acerifolia phenology Type Journal Article
  Year 2018 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban Forestry & Urban Greening  
  Volume 34 Issue Pages 71-77  
  Keywords Plants  
  Abstract Autumn phenology is an important part of the tree growing season that is still poorly understood. In addition to the environmental factors that might affect its timing, there are artificial effects introduced by modern society that could interfere with it, such as the increasing use of artificial light to illuminate urban nights. This study investigates the relationship between outdoor public lighting and leaf senescence of Platanus x acerifolia that constitutes with more than 4000 individuals, and 6% of public greening in Florence, Italy. The difference in autumn phenology under two lighting conditions was assessed by analysing data collected in a real context, using a presence-absence protocol of green leaves on 283 trees during leaf fall season from 2014 to 2017. Trees were classified in two groups of different light exposure. In 2016-2017, data were also collected at Cascine park, the main green area within the city and darker than the monitored sites. According to the analysis, the percentage of trees with green leaves under luminaires was significantly higher than trees far from the luminaires, for all sites from mid-December to the end of January, and this effect was enhanced during 2016-2017 which was characterised by a colder winter. In the same year, the period of absence of green leaves at Cascine started at least 20 days earlier than the other sites. These findings should be taken into consideration by scientists because artificial light could affect autumn phenology and therefore the length of the vegetative season, and by urban greening and light managers during the design and management of public green spaces. Moreover, the presence-absence protocol proved to be suitable for collecting observations because it was easy to perform in a real context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1932  
Permanent link to this record
 

 
Author Palmer M; Gibbons R; Bhagavathula R; Holshouser D; Davidson D openurl 
  Title Roadway lighting's impact on altering soybean growth: Volume 1 Type Journal Article
  Year 2017 Publication Illinois Center for Transportation Abbreviated Journal  
  Volume Research Report No. FHWA - ICT - 17 - 010 Issue Pages  
  Keywords plants; Lighting  
  Abstract The impact of roadway lighting on soybean plant growth and development was measured in situ at seven locations in the state of Illinois. The plant data collection included periodic height, reproductive stage, and Normalized Difference Vegetation Index (NDVI), as well as plant moisture content and dried seed weight after harvest. The periodic measurements were made at the same locations over time to determine delays in plant development. The impact of roadway lighting trespass was significant and measurable above thresholds of both horizontal and vertical illuminance as well as a combination of the two. A specification was drafted to minimize the impact of roadway lighting trespass on the soybean, and countermeasures were recommended to control the impact of lighting on the soybean.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1943  
Permanent link to this record
 

 
Author Patel, J.S.; Radetsky, L.; Rea, M.S. url  doi
openurl 
  Title The Value of Red Light at Night for Increasing Basil Yield Type Journal Article
  Year 2018 Publication Canadian Journal of Plant Science Abbreviated Journal Can. J. Plant Sci.  
  Volume 98 Issue 6 Pages 1321-1330  
  Keywords Plants  
  Abstract Sweet basil (<i>Ocimum basilicum L.</i>) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by <i>Peronospora belbahrii</i>. Nighttime exposure to red light has been shown to inhibit sporulation of <i>P. belbahrii</i>. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (LEDs; λ<sub>max</sub> = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density (PPFD) of 60 µmol m<sup>-2</sup> s<sup>-1</sup> during the otherwise dark night for 10 hours (from 20:00 to 06:00). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight, compared to plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1955  
Permanent link to this record
 

 
Author Kong, Y.; Stasiak, M.; Dixon, M.A.; Zheng, Y. url  doi
openurl 
  Title Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species Type Journal Article
  Year 2018 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany  
  Volume 155 Issue Pages 345-359  
  Keywords Plants  
  Abstract o explore the action mode of blue light on elongation growth of bedding plants, the plant growth and morphology traits of petunia (Petunia × hybrida, ‘Duvet Red’), calibrachoa (Calibrachoa × hybrida, ‘Kabloom Deep Blue’), geranium (Pelargonium × hortorum, ‘Pinto Premium Salmon’), and marigold (Tagetes erecta, ‘Antigua Orange’) were compared under four light quality treatments: (1) R, “pure” red light (660 nm); (2) B, “pure” blue light (450 nm); (3) BR, “unpure” blue light created by mixing B with a low level of R to provide B/R ≈ 9; (4) BRF, “unpure” blue light created by adding a low level of far red light to BR with red/far red ≈ 1. Continuous (24-h) light-emitting diode lighting with either 100 or 50 μmol m−2 s−1 photosynthetic photon flux density at ≈ 23℃ was used with the above treatments. After 14–20 day of lighting treatment, B promoted elongation growth compared to R, as demonstrated by a greater canopy height, main stem length, internode length, and daily main stem extension rate. However, BR showed similar or inhibitory effects on these traits relative to R, while BRF exhibited similar promotion effects as B. The calculated phytochrome photoequilibrium, an indication of phytochrome activity, was higher for R (0.89) and BR (0.74) than for B (0.49) and BRF (0.63). Adding red (or far red) light reversed the effects of B (or BR) on elongation growth and the phytochrome photoequilibrium, suggesting that blue light promotion of elongation growth is related to the lower phytochrome activity. Also, B and BRF, when compared to R or BR, promoted elongation growth to a greater degree at 50 than 100 μmol m−2 s−1 for petunia and calibrachoa. In addition to the promoted elongation growth, B and BRF reduced side branch number, biomass allocation to side branches, leaf epinasty, leaf angle, and/or leaf chlorophyll content relative to R or BR, but increased individual leaf area, petiole length, and/or biomass allocation to main stem, which varied with different species. It suggests that the promoted elongation growth by blue light associated with lower phytochrome activity is one of shade-avoidance responses with varying sensitivity among species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-8472 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1973  
Permanent link to this record
 

 
Author Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J. url  doi
openurl 
  Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
  Year 2018 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.  
  Volume 59 Issue 4 Pages 529-536  
  Keywords Plants  
  Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3452 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1983  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: