|   | 
Details
   web
Records
Author Maksimainen, M.; Vaaja, M.T.; Kurkela, M.; Virtanen, J.-P.; Julin, A.; Jaalama, K.; Hyyppä, H.
Title Nighttime Mobile Laser Scanning and 3D Luminance Measurement: Verifying the Outcome of Roadside Tree Pruning with Mobile Measurement of the Road Environment Type Journal Article
Year 2020 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 9 Issue 7 Pages 455
Keywords Lighting; Plants; Instrumentation
Abstract Roadside vegetation can affect the performance of installed road lighting. We demonstrate a workflow in which a car-mounted measurement system is used to assess the light-obstructing effect of roadside vegetation. The mobile mapping system (MMS) includes a panoramic camera system, laser scanner, inertial measurement unit, and satellite positioning system. The workflow and the measurement system were applied to a road section of Munkkiniemenranta, Helsinki, Finland, in 2015 and 2019. The relative luminance distribution on a road surface and the obstructing vegetation were measured before and after roadside vegetation pruning applying a luminance-calibrated mobile mapping system. The difference between the two measurements is presented, and the opportunities provided by the mobile 3D luminance measurement system are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 3092
Permanent link to this record
 

 
Author Jawaad Atif, M.; Amin, B.; Imran Ghani, M.; Ali, M.; Liu, X.; Zhang, Y.; Cheng, Z.
Title Allium sativum L. (Garlic) bulb enlargement as influenced by differential combinations of photoperiod and temperature Type Journal Article
Year 2020 Publication Food Chemistry Abbreviated Journal Food Chemistry
Volume in press Issue Pages 127991
Keywords Plants
Abstract Photoperiod and temperature are vital environmental factors that regulate plant developmental processes. However, the roles of these factors in garlic bulb enlargement are unclear. In this report, responses of garlic bulb morphology and physiology to combinations of photoperiod (light/dark: 10/14 h, 12/12 h, 14/10 h) and temperature (light/dark: 25/18°C, 30/20°C) were investigated. For garlic cultivar G103, bulb characteristics, phytohormones (IAA, ABA, ZT, tZR, JA), allicin and phenolic acids (p-coumaric and p-hydroxybenzoic) were highest under a photoperiod of 14 h at 30°C. Maximum GA was observed under 14 h+30°C for cv. G2011-5. Maximum caffeic, ferulic and vanillic acids were detected for cv. G2011-5 at 14 h+30°C, 12 h+25°C and 14 h+25°C, respectively. Flavonoids (myricetin, quercetin, kaempferol and apigenin) were not detected in this trial. This is the first report describing the impact of long periods of light duration and higher temperatures on garlic morphology, phytohormones, phenolic acids and allicin content.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-8146 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 3137
Permanent link to this record
 

 
Author Boom, M.P.; Spoelstra, K.; Biere, A.; Knop, E.; Visser, M.E.
Title Pollination and fruit infestation under artificial light at night:light colour matters Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 18389
Keywords Plants; Ecology
Abstract Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light-dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant-insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant-insect interactions in the Silene latifolia-Hadena bicruris system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by Hadena bicruris, a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by H. bicruris was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant-insect interactions differently, with direct consequences for plant fitness.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands. m.visser@nioo.knaw.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33110135; PMCID:PMC7591485 Approved no
Call Number (up) GFZ @ kyba @ Serial 3189
Permanent link to this record
 

 
Author Falcon, J.; Torriglia, A.; Attia, D.; Vienot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D.
Title Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems Type Journal Article
Year 2020 Publication Frontiers in Neuroscience Abbreviated Journal Front Neurosci
Volume 14 Issue Pages 602796
Keywords Review; Animals; Plants; Ecology; anthropogenic impact; artificial-light-at-night; biological clocks; ecosystems; light-emitting-diodes; photoreception
Abstract The present review draws together wide-ranging studies performed over the last decades that catalogue the effects of artificial-light-at-night (ALAN) upon living species and their environment. We provide an overview of the tremendous variety of light-detection strategies which have evolved in living organisms – unicellular, plants and animals, covering chloroplasts (plants), and the plethora of ocular and extra-ocular organs (animals). We describe the visual pigments which permit photo-detection, paying attention to their spectral characteristics, which extend from the ultraviolet into infrared. We discuss how organisms use light information in a way crucial for their development, growth and survival: phototropism, phototaxis, photoperiodism, and synchronization of circadian clocks. These aspects are treated in depth, as their perturbation underlies much of the disruptive effects of ALAN. The review goes into detail on circadian networks in living organisms, since these fundamental features are of critical importance in regulating the interface between environment and body. Especially, hormonal synthesis and secretion are often under circadian and circannual control, hence perturbation of the clock will lead to hormonal imbalance. The review addresses how the ubiquitous introduction of light-emitting diode technology may exacerbate, or in some cases reduce, the generalized ever-increasing light pollution. Numerous examples are given of how widespread exposure to ALAN is perturbing many aspects of plant and animal behaviour and survival: foraging, orientation, migration, seasonal reproduction, colonization and more. We examine the potential problems at the level of individual species and populations and extend the debate to the consequences for ecosystems. We stress, through a few examples, the synergistic harmful effects resulting from the impacts of ALAN combined with other anthropogenic pressures, which often impact the neuroendocrine loops in vertebrates. The article concludes by debating how these anthropogenic changes could be mitigated by more reasonable use of available technology – for example by restricting illumination to more essential areas and hours, directing lighting to avoid wasteful radiation and selecting spectral emissions, to reduce impact on circadian clocks. We end by discussing how society should take into account the potentially major consequences that ALAN has on the natural world and the repercussions for ongoing human health and welfare.
Address Inserm, CNRS, Institut des Neurosciences Cellulaires et Integratives, Universite de Strasbourg, Strasbourg, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-453X ISBN Medium
Area Expedition Conference
Notes PMID:33304237; PMCID:PMC7701298 Approved no
Call Number (up) GFZ @ kyba @ Serial 3245
Permanent link to this record
 

 
Author Shillo, R., & Halevy, A. H.
Title Interaction of photoperiod and temperature in flowering-control of Gypsophila paniculata L Type Journal Article
Year 1982 Publication Scientia Horticulturae Abbreviated Journal
Volume 16 Issue 4 Pages 385-393
Keywords Plants
Abstract Long day promotes flowering of Gysophila paniculata L cultivar ‘Bristol Fairy’. Repeated treatments with GA3 or GA4 + 7 in short days did not promote flowering. The long photoperiod is effective only at relatively high temperatures. At night temperatures below 12°C, the plants remain vegetative even in long days. Efficient artificial lighting is from incandescent lamps at 60–100 lux. Fluorescent lighting (Cool-White) is not effective. Lighting of 4 hours as a night-break or at the end of the night were equally effective, but 4 hours lighting as a day-extension was less effective. Whole-night lighting promoted flowering more than any of the 4-hour lighting regimes. Cyclic lighting of one third light in each cycle promoted flowering to the same extent as continuous lighting. Light intensity during the day has a decisive effect on flower production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) IDA @ intern @ Serial 2370
Permanent link to this record