|   | 
Details
   web
Records
Author ffrench-Constant, R.; Somers-Yeates, R.; Bennie, J.; Economou, T.; Hodgson, D.; Spalding, A.; McGregor, P.
Title Light pollution is associated with earlier tree budburst across the United Kingdom Type Journal Article
Year 2016 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc Roy Soc B Biol Sci
Volume 283 Issue 1833 Pages (up) 1-9
Keywords Plants; light pollution, phenology, species interactions, tree budburst, temperature, urban heat islands; United Kingdom
Abstract The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.
Address Centre for Ecology and Conservation, and 2 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9EZ, UK; rf222(at)exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1472
Permanent link to this record
 

 
Author Maggi, E.; Benedetti-Cecchi, L.
Title Trophic compensation stabilizes marine primary producers exposed to artificial light at night Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 606 Issue Pages (up) 1-5
Keywords Plants; Animals; Ecology
Abstract Artificial light at night (ALAN) is a widespread phenomenon along coastal areas. Despite increasing evidence of pervasive effects of ALAN on patterns of species distribution and abundance, the potential of this emerging threat to alter ecological processes in marine ecosystems has remained largely unexplored. Here, we show how exposure to white LED lighting, comparable to that experienced along local urbanized coasts, significantly enhanced the impact of grazing gastropods on epilithic microphytobenthos (MPB). ALAN increased both the photosynthetic biomass of MPB and the grazing pressure of gastropods, such that consumers compensated for the positive effect of night lighting on primary producers. Our results indicate that trophic interactions can provide a stabilizing compensatory mechanism against ALAN effects in natural food webs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2063
Permanent link to this record
 

 
Author Ebisawa, M.; Shoji, K.; Kato, M.; Shimomura, K.; Goto, F.; Yoshihara, T.
Title Supplementary Ultraviolet Radiation B Together with Blue Light at Night Increased Quercetin Content and Flavonol Synthase Gene Expression in Leaf Lettuce (Lactuca sativa L.) Type Journal Article
Year 2008 Publication Environment Control in Biology Abbreviated Journal Environ. Control Biol.
Volume 46 Issue 1 Pages (up) 1-11
Keywords Plants
Abstract Establishment of an effective supplementary lighting procedure is necessary to increase the value of leaf lettuce grown using a hydroponic method involving a low production cost. In leaf lettuce extracts, quercetin, one of the flavonoids, was isolated and identified. It was investigated that quercetin has important functions that can be used as a dietary supplement. Flavonol synthase (FLS) is a key enzyme involved in quercetin biosynthesis, catalyzes the conversion of dihydroquercetin to quercetin. Therefore, we determined the sequence of the flavonol synthase gene (FLS) in red leaf lettuce. We harvested leaf lettuce grown using supplementary light sources, such as ultraviolet radiation B (UV-B), ultraviolet radiation A, blue, and red lamps during the night. It is noteworthy that FLS expression and the quercetin content were particularly increased to a greater extent in young leaves than in mature leaves when UV-B and blue light were used simultaneously at night. We suggest that UV-B with blue light is used simultaneously at night for producing leaf lettuce with high quercetin content.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1880-554X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2799
Permanent link to this record
 

 
Author Kirschey, T.; Meisel, J.
Title Augen in der Landschaft Seen und Stillgewässer Nordostdeutschlands. Type Journal Article
Year 2008 Publication Naturmagazin Abbreviated Journal
Volume Issue Pages (up) 4-11
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 661
Permanent link to this record
 

 
Author Breitler, J.-C.; Djerrab, D.; Leran, S.; Toniutti, L.; Guittin, C.; Severac, D.; Pratlong, M.; Dereeper, A.; Etienne, H.; Bertrand, B.
Title Full moonlight-induced circadian clock entrainment in Coffea arabica Type Journal Article
Year 2020 Publication BMC Plant Biology Abbreviated Journal BMC Plant Biol
Volume 20 Issue 1 Pages (up) 24
Keywords Moonlight; Plants
Abstract BACKGROUND: It is now well documented that moonlight affects the life cycle of invertebrates, birds, reptiles, and mammals. The lunisolar tide is also well-known to alter plant growth and development. However, although plants are known to be very photosensitive, few studies have been undertaken to explore the effect of moonlight on plant physiology. RESULTS: Here for the first time we report a massive transcriptional modification in Coffea arabica genes under full moonlight conditions, particularly at full moon zenith and 3 h later. Among the 3387 deregulated genes found in our study, the main core clock genes were affected. CONCLUSIONS: Moonlight also negatively influenced many genes involved in photosynthesis, chlorophyll biosynthesis and chloroplast machinery at the end of the night, suggesting that the full moon has a negative effect on primary photosynthetic machinery at dawn. Moreover, full moonlight promotes the transcription of major rhythmic redox genes and many heat shock proteins, suggesting that moonlight is perceived as stress. We confirmed this huge impact of weak light (less than 6 lx) on the transcription of circadian clock genes in controlled conditions mimicking full moonlight.
Address UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2229 ISBN Medium
Area Expedition Conference
Notes PMID:31941456 Approved no
Call Number GFZ @ kyba @ Serial 2817
Permanent link to this record