|   | 
Details
   web
Records
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.; Lewis, O.
Title Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume 55 Issue 6 Pages (up) 2698-2706
Keywords Ecology; Animals; Plants
Abstract Globally, many ecosystems are exposed to artificial light at night. Nighttime lighting has direct biological impacts on species at all trophic levels. However, the effects of artificial light on biotic interactions remain, for the most part, to be determined.

We exposed experimental mesocosms containing combinations of grassland plants and invertebrate herbivores and predators to illumination at night over a 3‐year period to simulate conditions under different common forms of street lighting.

We demonstrate both top‐down (predation‐controlled) and bottom‐up (resource‐controlled) impacts of artificial light at night in grassland communities. The impacts on invertebrate herbivore abundance were wavelength‐dependent and mediated via other trophic levels.

White LED lighting decreased the abundance of a generalist herbivore mollusc by 55% in the presence of a visual predator, but not in its absence, while monochromatic amber light (with a peak wavelength similar to low‐pressure sodium lighting) decreased abundance of a specialist herbivore aphid (by 17%) by reducing the cover and flower abundance of its main food plant in the system. Artificial white light also significantly increased the food plant's foliar carbon to nitrogen ratio.

We conclude that exposure to artificial light at night can trigger ecological effects spanning trophic levels, and that the nature of such impacts depends on the wavelengths emitted by the lighting technology employed.

Policy implications. Our results confirm that artificial light at night, at illuminance levels similar to roadside vegetation, can have population effects mediated by both top‐down and bottom‐up effects on ecosystems. Given the increasing ubiquity of light pollution at night, these impacts may be widespread in the environment. These results underline the importance of minimizing ecosystem disruption by reducing light pollution in natural and seminatural ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2086
Permanent link to this record
 

 
Author Correa-Cano, M.E.; Goettsch, B.; Duffy, J.P.; Bennie, J.; Inger, R.; Gaston, K.J.
Title Erosion of natural darkness in the geographic ranges of cacti Type Journal Article
Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 8 Issue 1 Pages (up) 4347
Keywords Plants; Remote Sensing
Abstract Naturally dark nighttime environments are being widely eroded by the introduction of artificial light at night (ALAN). The biological impacts vary with the intensity and spectrum of ALAN, but have been documented from molecules to ecosystems. How globally severe these impacts are likely to be depends in large part on the relationship between the spatio-temporal distribution of ALAN and that of the geographic ranges of species. Here, we determine this relationship for the Cactaceae family. Using maps of the geographic ranges of cacti and nighttime stable light composite images for the period 1992 to 2012, we found that a high percentage of cactus species were experiencing ALAN within their ranges in 1992, and that this percentage had increased by 2012. For almost all cactus species (89.7%) the percentage of their geographic range that was lit increased from 1992-1996 to 2008-2012, often markedly. There was a significant negative relationship between the species richness of an area, and that of threatened species, and the level of ALAN. Cacti could be particularly sensitive to this widespread and ongoing intrusion of ALAN into their geographic ranges, especially when considering the potential for additive and synergistic interactions with the impacts of other anthropogenic pressures.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:29531261; PMCID:PMC5847551 Approved no
Call Number GFZ @ kyba @ Serial 1824
Permanent link to this record
 

 
Author Sanders, D.; Kehoe, R.; Tiley, K.; Bennie, J.; Cruse, D.; Davies, T.W.; Frank van Veen, F.J.; Gaston, K.J.
Title Artificial nighttime light changes aphid-parasitoid population dynamics Type Journal Article
Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 5 Issue Pages (up) 15232
Keywords Ecology; animals; plants
Abstract Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem.
Address Environment &Sustainability Institute, University of Exeter, Cornwall Campus Penryn, Cornwall, TR10 9EZ, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:26472251; PMCID:PMC4607942 Approved no
Call Number LoNNe @ kyba @ Serial 1290
Permanent link to this record
 

 
Author Nelson, J.A.; Bugbee, B.
Title Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal PLoS One
Volume 9 Issue 6 Pages (up) e99010
Keywords Plants
Abstract Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.
Address Crop Physiology Laboratory, Department of Plant Soils and Climate, Utah State University, Logan, Utah, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24905835; PMCID:PMC4048233 Approved no
Call Number GFZ @ kyba @ Serial 2233
Permanent link to this record
 

 
Author Zhang, B.; Zhang, H.; Jing, Q.; Wang, J.
Title Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.) Type Journal Article
Year 2020 Publication Ecological Indicators Abbreviated Journal Ecological Indicators
Volume 115 Issue Pages (up) 106448
Keywords Plants
Abstract Perennial ryegrass (Lolium perenne L.) was commonly used for urban green planting such as lawns, which was not only affected by sunlight, but also by light pollution caused by night artificial lighting. In order to see the ryegrass growth, physiological characters and chlorophyll fluorescence response to light pollution and provide the suitable lighting time, 6 different artificial lighting times (24/0 h, 22/2 h, 20/4 h, 18/6 h, 16/8 h and 14/10 h) were conducted in growth chambers. There were significant systematic differences in perennial ryegrass growth characters in seed germination rate, leaf length (LL) and leaf weight (LW) (F = 47.99, 28.34, 13.47, respectively; P < 0.01) while under 16/8h lighting time treatment which had the highest values and the increasing lighting time decreased the growth. It had the best effect under 16/8h lighting time treatment on leaf physiological reactions and also significant. The maximum curvature point temperature (TCC) was significant different (F = 28.08, P < 0.01). The relative variable fluorescence differences at 2 ms (VJ) was increased with the lighting time increased (F = 20.25, P < 0.01). The results of reaction center (RC) of PSII under 6 lighting times also had significant differences. For the result of the yield and efficiency of electron transport chain (ETC), Fv/Fm (φP0), ψ0 and φE0 showed the significantly increased trend with the lighting time decreased while the φD0 was decreased. The shape of the OJIP curves was sensitive to the lighting times which showed that with the increasing lighting times the chlorophyll fluorescence intensity changed and shifted the fluorescence curve lower. Leaf light-response curves (LC) were also significant under 6 lighting times. Significant positive correlations were found between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and J-I-P test chlorophyll fluorescence parameters (PIABS, ABS/RC and TR0/RC) except ET0/RC while the correlation with DI0/RC was significant negative. There were significant positive correlations between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and φP0, φE0, ψ0 while the relationships with φD0 were significantly negative. Nighttime artificial lighting acted as a depressor of the fitness of photosynthesis and growth characters, via the changing of the photosynthetic apparatus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470160X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2905
Permanent link to this record