|   | 
Details
   web
Records
Author Giavi, S.; Blosch, S.; Schuster, G.; Knop, E.
Title Artificial light at night can modify ecosystem functioning beyond the lit area Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages (up) 11870
Keywords plants; ecology
Abstract Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.
Address Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland. eva.knop@ieu.uzh.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32681056; PMCID:PMC7368033 Approved no
Call Number GFZ @ kyba @ Serial 3076
Permanent link to this record
 

 
Author Sanders, D.; Kehoe, R.; Tiley, K.; Bennie, J.; Cruse, D.; Davies, T.W.; Frank van Veen, F.J.; Gaston, K.J.
Title Artificial nighttime light changes aphid-parasitoid population dynamics Type Journal Article
Year 2015 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 5 Issue Pages (up) 15232
Keywords Ecology; animals; plants
Abstract Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem.
Address Environment &Sustainability Institute, University of Exeter, Cornwall Campus Penryn, Cornwall, TR10 9EZ, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:26472251; PMCID:PMC4607942 Approved no
Call Number LoNNe @ kyba @ Serial 1290
Permanent link to this record
 

 
Author Nelson, J.A.; Bugbee, B.
Title Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal PLoS One
Volume 9 Issue 6 Pages (up) e99010
Keywords Plants
Abstract Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.
Address Crop Physiology Laboratory, Department of Plant Soils and Climate, Utah State University, Logan, Utah, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24905835; PMCID:PMC4048233 Approved no
Call Number GFZ @ kyba @ Serial 2233
Permanent link to this record
 

 
Author Zhang, B.; Zhang, H.; Jing, Q.; Wang, J.
Title Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.) Type Journal Article
Year 2020 Publication Ecological Indicators Abbreviated Journal Ecological Indicators
Volume 115 Issue Pages (up) 106448
Keywords Plants
Abstract Perennial ryegrass (Lolium perenne L.) was commonly used for urban green planting such as lawns, which was not only affected by sunlight, but also by light pollution caused by night artificial lighting. In order to see the ryegrass growth, physiological characters and chlorophyll fluorescence response to light pollution and provide the suitable lighting time, 6 different artificial lighting times (24/0 h, 22/2 h, 20/4 h, 18/6 h, 16/8 h and 14/10 h) were conducted in growth chambers. There were significant systematic differences in perennial ryegrass growth characters in seed germination rate, leaf length (LL) and leaf weight (LW) (F = 47.99, 28.34, 13.47, respectively; P < 0.01) while under 16/8h lighting time treatment which had the highest values and the increasing lighting time decreased the growth. It had the best effect under 16/8h lighting time treatment on leaf physiological reactions and also significant. The maximum curvature point temperature (TCC) was significant different (F = 28.08, P < 0.01). The relative variable fluorescence differences at 2 ms (VJ) was increased with the lighting time increased (F = 20.25, P < 0.01). The results of reaction center (RC) of PSII under 6 lighting times also had significant differences. For the result of the yield and efficiency of electron transport chain (ETC), Fv/Fm (φP0), ψ0 and φE0 showed the significantly increased trend with the lighting time decreased while the φD0 was decreased. The shape of the OJIP curves was sensitive to the lighting times which showed that with the increasing lighting times the chlorophyll fluorescence intensity changed and shifted the fluorescence curve lower. Leaf light-response curves (LC) were also significant under 6 lighting times. Significant positive correlations were found between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and J-I-P test chlorophyll fluorescence parameters (PIABS, ABS/RC and TR0/RC) except ET0/RC while the correlation with DI0/RC was significant negative. There were significant positive correlations between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and φP0, φE0, ψ0 while the relationships with φD0 were significantly negative. Nighttime artificial lighting acted as a depressor of the fitness of photosynthesis and growth characters, via the changing of the photosynthetic apparatus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470160X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2905
Permanent link to this record
 

 
Author Shimomura, M.; Yoshida, H.; Fujiuchi, N.; Ariizumi, T.; Ezura, H.; Fukuda, N.
Title Continuous blue lighting and elevated carbon dioxide concentration rapidly increase chlorogenic acid content in young lettuce plants Type Journal Article
Year 2020 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae
Volume 272 Issue Pages (up) 109550
Keywords Plants
Abstract Chlorogenic acid (CGA) is a strong antioxidant that potentially reduces oxidative damage in human cells. In this study, the effects of environmental factors such as photoperiod, light quality and intensity, and CO2 concentration on the growth and CGA content of lettuce (Lactuca sativa L.) were evaluated. CGA content in fresh lettuce increased under high light intensity treatments, doubling in concentration under 200 μmol m−2 s-1 compared to 100 μmol m−2 s-1. Elevated CO2 concentration also increased CGA content in fresh lettuce, quadrupling in concentration when grown at 1000 ppm compared to 400 ppm. Furthermore, there was a compound effect of light intensity and CO2 concentration whereby a light intensity level of 200 μmol m−2 s-1 and CO2 of 1000 ppm produced an even higher concentration of CGA, 199 mg per 100 g of fresh lettuce. Increased CGA concentration because of continuous lighting and elevated CO2 was observed under both fluorescent light and blue LED, but not under red LED treatment. Increased day length also induced higher CGA content in lettuce plants. These results show that continuous lighting, including blue spectrum and elevated CO2 concentration can cause higher CGA accumulation in lettuce plants. The observed increase in CGA content was induced only for 2 days after treatment was initiated. One possible interpretation of the data is that physiological stress caused by excess photosynthesis under continuous lighting results in higher CGA content to protect the plant body from high levels of reactive oxidative species. In addition, blue light and CO2 could be stimulus signals for inducing high CGA accumulation via metabolite changes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4238 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3090
Permanent link to this record