|   | 
Details
   web
Records
Author Haag, C.R.; Riek, M.; Hottinger, J.W.; Pajunen, V.I.; Ebert, D.
Title Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age Type Journal Article
Year 2005 Publication Genetics Abbreviated Journal Genetics
Volume 170 Issue 4 Pages 1809-1820
Keywords Plants; Aging; Animals; Daphnia/*genetics/*physiology; *Genetic Variation; *Genetics, Population
Abstract If colonization of empty habitat patches causes genetic bottlenecks, freshly founded, young populations should be genetically less diverse than older ones that may have experienced successive rounds of immigration. This can be studied in metapopulations with subpopulations of known age. We studied allozyme variation in metapopulations of two species of water fleas (Daphnia) in the skerry archipelago of southern Finland. These populations have been monitored since 1982. Screening 49 populations of D. longispina and 77 populations of D. magna, separated by distances of 1.5-2180 m, we found that local genetic diversity increased with population age whereas pairwise differentiation among pools decreased with population age. These patterns persisted even after controlling for several potentially confounding ecological variables, indicating that extinction and recolonization dynamics decrease local genetic diversity and increase genetic differentiation in these metapopulations by causing genetic bottlenecks during colonization. We suggest that the effect of these bottlenecks may be twofold, namely decreasing genetic diversity by random sampling and leading to population-wide inbreeding. Subsequent immigration then may not only introduce new genetic material, but also lead to the production of noninbred hybrids, selection for which may cause immigrant alleles to increase in frequency, thus leading to increased genetic diversity in older populations.
Address Unite d'Ecologie et d'Evolution, Departement de Biologie, Universite de Fribourg, CH-1700 Fribourg, Switzerland. christoph.haag@ed.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:15937138; PMCID:PMC1449778 Approved no
Call Number LoNNe @ kagoburian @ Serial 660
Permanent link to this record
 

 
Author Viera-Perez, M.; Hernandez-Calvento, L.; Hesp, P.A.; Santana-Del Pino, A.
Title Effects of artificial light on flowering of foredune vegetation Type Journal Article
Year 2019 Publication Ecology Abbreviated Journal Ecology
Volume 100 Issue 5 Pages e02678
Keywords Plants; Coastal management; coastal dunes; Canary Islands; Spain; Europe
Abstract The impact of ecological light pollution involves alteration of periods of natural light, a fact that has proven effects on ecosystems. Few studies have focused on the impact of this pollution on wild plant species, and none on coastal dune plants. Many coastal dunes and their plants are adjacent to tourist areas, and these might be affected by light pollution. Such is the case of the Natural Reserve Dunas de Maspalomas (Gran Canaria), where some individuals of the plant species Traganum moquinii, located in the El Ingles beach foredune zone, are affected by light pollution. This study examines the effect of light pollution on the flowering process, and by extension the reproductive cycle of these plants. Plants located closer to high artificial illumination sources receive ~2120 hours per year of intense light more than plants located furthest from those artificial lighting sources. Parts of the plants of Traganum moquinii exposed directly to the artificial light show a significant decrease in the production of flowers, compared to the parts in plants in shade, and to the plants more distant from artificial lights. In consequence, plants exposed more directly to artificial light have a lower potential for seed reproduction. The spectrum of artificial light also affects the plants, and light between 600 and 700 nm primarily affects the reproductive cycle of the Traganum moquinii species. The implications for the ecological and geomorphological functioning of the dune system are discussed, because this species plays a decisive role in the formation of foredune zones and nebkhas in arid dune systems.
Address Departamento de Matematicas, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0012-9658 ISBN Medium
Area Expedition Conference
Notes PMID:30825328 Approved no
Call Number GFZ @ kyba @ Serial 2244
Permanent link to this record
 

 
Author Moore, B.
Title The Relative Length of Day and Night Type Journal Article
Year 1920 Publication Ecology Abbreviated Journal
Volume 1 Issue 3 Pages 234-237
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0012-9658 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2407
Permanent link to this record
 

 
Author Lawrence, B.K.; Fehr, W.R.
Title Reproductive Response of Soybeans to Night Interruption1 Type Journal Article
Year 1981 Publication Crop Science Abbreviated Journal
Volume 21 Issue 5 Pages 755
Keywords Plants
Abstract Artificial lights may be used to delay flowering of soybean [Glycine max (L.) Merr.] cultivars. Previous research has suggested that night interruption imposed every other night would delay flowering as much as every-night interruption. Our objective was to evaluate the reproductive development of cultivars when exposed to night interruption every night compared with exposure every other night. One cultivar of each Maturity Group 00 through V was grown in the field at Ames, Iowa during 1978 and 1979. The four light treatments imposed every night or every other night included illumination with incandescent light from sunset to sunrise, 2300 to 0030 hours, 0030 to 0200 hours, or 0200 to 0330 hours. Control plots were not exposed to artificial light.

The average number of days that reproductive development was delayed beyond the control was twice as great for the every-night treatments as for the every-other-night treatments. Illumination from sunset to sunrise delayed reproductive development significantly more than the treatments of night interruption for 1.5 hours. Night interruption near the end of the dark period (0200 to 0330 hours) delayed reproductive development more than the earlier interruptions.

The results did not support the hypothesis that light treatments every other night would delay reproductive development as much as every-night interruptions. The lighting regime needed to delay reproductive development will depend on the photoperiod requirements of the cultivars and duration of the delay that is desired.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0011-183X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2367
Permanent link to this record
 

 
Author Patel, J.S.; Radetsky, L.; Rea, M.S.
Title The Value of Red Light at Night for Increasing Basil Yield Type Journal Article
Year 2018 Publication Canadian Journal of Plant Science Abbreviated Journal Can. J. Plant Sci.
Volume 98 Issue 6 Pages 1321-1330
Keywords Plants
Abstract Sweet basil (<i>Ocimum basilicum L.</i>) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by <i>Peronospora belbahrii</i>. Nighttime exposure to red light has been shown to inhibit sporulation of <i>P. belbahrii</i>. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (LEDs; λ<sub>max</sub> = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density (PPFD) of 60 µmol m<sup>-2</sup> s<sup>-1</sup> during the otherwise dark night for 10 hours (from 20:00 to 06:00). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight, compared to plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0008-4220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1955
Permanent link to this record