toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gómez, C.; Mitchell, C.A. url  openurl
  Title Physiological and Productivity Responses of High-wire Tomato as Affected by Supplemental Light Source and Distribution within the Canopy Type Journal Article
  Year 2016 Publication Journal of the American Society for Horticultural Science Abbreviated Journal J. Amer. Soc. Hort. Sci.  
  Volume 141 Issue 2 Pages 196-208  
  Keywords Plants; tomato; LED; LED lighting; Solanum lycopersicum; intracanopy lighting; greenhouses; intracanopy supplemental lighting; daily light integral  
  Abstract The relative coolness-to-touch of light-emitting diodes (LEDs) has enabled commercial implementation of intracanopy lighting (ICL) in the greenhouse. Intracanopy lighting, which refers to the strategy of lighting along the side or from within the foliar canopy, can increase canopy photosynthetic activity, but physiological and productivity responses of high-wire greenhouse tomato (Solanum lycopersicum) to intracanopy supplemental lighting (SL) still are not yet fully understood. Two consecutive production experiments were conducted across seasons in a glass-glazed greenhouse located in a midnorthern, continental climate [lat. 40°N (West Lafayette, IN)]. Plants were grown from winter-to-summer [increasing solar daily light integral (DLI)] and from summer-to-winter (decreasing solar DLI) to compare three SL strategies for high-wire tomato production across changing solar DLIs: top lighting with high-pressure sodium lamps (HPS) vs. intracanopy LED vertical towers vs. hybrid SL (HPS + horizontal ICL-LEDs). A control treatment also was included for which no SL was provided. Supplemental DLI for each experimental period was adjusted monthly, to complement seasonal changes in sunlight, aiming to approach a target total DLI of 25 mol·m‒2·d‒1 during fruit set. Harvest parameters (total fruit fresh weight, number of fruit harvested, and average cluster fresh weight), tissue temperature, chlorophyll fluorescence, and stomatal conductance (gS) were unaffected by SL treatment in both experiments. Among the physiological parameters evaluated, CO2 assimilation measured under light-saturating conditions, light-limited quantum-use efficiency, and maximum gross CO2 assimilation (Amax) proved to be good indicators of how ICL reduces the top-to-bottom decline in leaf photosynthetic activity otherwise measured with top lighting only (HPS-SL or solar). Although SL generally increased fruit yield relative to control, lack of SL treatment differences among harvest parameters indicates that higher crop photosynthetic activity did not increase fruit yield. Compared with control, intracanopy SL increased yield to the same extent as top SL, but the remaining photoassimilate from ICL most likely was partitioned to maintain nonharvested, vegetative plant parts as well.  
  Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010  
  Corporate Author Thesis  
  Publisher American Society for Horticultural Science Place of Publication Editor  
  Language Engligh Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0003-1062 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1431  
Permanent link to this record
 

 
Author Vänninen, I.; Pinto, D.M.; Nissinen, A.I.; Johansen, N.S.; Shipp, L. url  doi
openurl 
  Title In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions Type Journal Article
  Year 2010 Publication Annals of Applied Biology Abbreviated Journal  
  Volume 157 Issue 3 Pages 393-414  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0003-4746 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 658  
Permanent link to this record
 

 
Author Myers, L.; Christian, K.; Kirchner, R. url  doi
openurl 
  Title Flowering responses of 48 lines of oilseed rape (Brassica spp.) to vernalization and daylength Type Journal Article
  Year 1982 Publication Australian Journal of Agricultural Research Abbreviated Journal Aust. J. Agric. Res.  
  Volume 33 Issue 6 Pages 927  
  Keywords Plants  
  Abstract Forty-eight lines of Brassica spp, of diverse origins were grown in the glasshouse either under natural daylengths or daylengths extended to 16 h by artificial illumination. Plants were either unvernalized or had been subjected to 6 weeks at 8¦C day and 6¦C night temperatures as seedlings. Lines could be classified into two major groups, according to whether or not vernalization or long photoperiods were essential for 50% flowering within 21 weeks. In six lines, both vernalization and long days were essential for prompt flowering, while only five lines did not respond to either treatment. Strong interactions between lines and treatments were found in the number of leaves and subtended buds at flowering. The results show that a wide range of responses is obtainable from material currently available, offering considerabk, scope for adaptation to different environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0004-9409 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2369  
Permanent link to this record
 

 
Author Patel, J.S.; Radetsky, L.; Rea, M.S. url  doi
openurl 
  Title The Value of Red Light at Night for Increasing Basil Yield Type Journal Article
  Year 2018 Publication Canadian Journal of Plant Science Abbreviated Journal Can. J. Plant Sci.  
  Volume 98 Issue 6 Pages 1321-1330  
  Keywords Plants  
  Abstract Sweet basil (<i>Ocimum basilicum L.</i>) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by <i>Peronospora belbahrii</i>. Nighttime exposure to red light has been shown to inhibit sporulation of <i>P. belbahrii</i>. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (LEDs; λ<sub>max</sub> = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density (PPFD) of 60 µmol m<sup>-2</sup> s<sup>-1</sup> during the otherwise dark night for 10 hours (from 20:00 to 06:00). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight, compared to plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0008-4220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1955  
Permanent link to this record
 

 
Author Lawrence, B.K.; Fehr, W.R. url  doi
openurl 
  Title Reproductive Response of Soybeans to Night Interruption1 Type Journal Article
  Year 1981 Publication Crop Science Abbreviated Journal  
  Volume 21 Issue 5 Pages 755  
  Keywords Plants  
  Abstract Artificial lights may be used to delay flowering of soybean [Glycine max (L.) Merr.] cultivars. Previous research has suggested that night interruption imposed every other night would delay flowering as much as every-night interruption. Our objective was to evaluate the reproductive development of cultivars when exposed to night interruption every night compared with exposure every other night. One cultivar of each Maturity Group 00 through V was grown in the field at Ames, Iowa during 1978 and 1979. The four light treatments imposed every night or every other night included illumination with incandescent light from sunset to sunrise, 2300 to 0030 hours, 0030 to 0200 hours, or 0200 to 0330 hours. Control plots were not exposed to artificial light.

The average number of days that reproductive development was delayed beyond the control was twice as great for the every-night treatments as for the every-other-night treatments. Illumination from sunset to sunrise delayed reproductive development significantly more than the treatments of night interruption for 1.5 hours. Night interruption near the end of the dark period (0200 to 0330 hours) delayed reproductive development more than the earlier interruptions.

The results did not support the hypothesis that light treatments every other night would delay reproductive development as much as every-night interruptions. The lighting regime needed to delay reproductive development will depend on the photoperiod requirements of the cultivars and duration of the delay that is desired.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0011-183X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: