toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Eng, R.Y.N.; Tsujita, M.J.; Grodzinski, B. url  doi
openurl 
  Title The effects of supplementary HPS lighting and carbon dioxide enrichment on the vegetative growth, nutritional status and flowering characteristics ofChrysanthemum morifoliumRamat Type Journal Article
  Year 1985 Publication Journal of Horticultural Science Abbreviated Journal Journal of Horticultural Science  
  Volume 60 Issue 3 Pages 389-395  
  Keywords Plants  
  Abstract Supplementary high pressure sodium (HPS) lighting (140 µmol m−2s−1) and CO2 enrichment (1375 µl l−1) improved the vegetative growth of Chrysanthemum morifolium cv Dramatic by increases in stem length, stem diameter, root weight ratio, dry weight, relative growth and net assimilation rates. Three-week-old chrysanthemums grown under CO2 enrichment and HPS lighting had lower leaf weight and stem weight ratios as well as lower foliar nutrient content than those grown under ambient CO2 and natural light. Plants grown on to maturity under CO2 enrichment and supplementary HPS lighting had the longest stem lengths, the most flowers and greatest increase in dry weight. The combination of both additional light and CO2 was superior to either factor used alone. With 24 h HPS supplementary lighting CO2 enrichment was most effective in improving vegetative growth and flower quality when applied during the daytime. Night CO2 enrichment was not commercially beneficial at the light levels employed in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-1589 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2373  
Permanent link to this record
 

 
Author Bunning, E.; Moser, I. url  doi
openurl 
  Title Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction Type Journal Article
  Year 1969 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 62 Issue 4 Pages 1018-1022  
  Keywords Plants; Moonlight  
  Abstract Threshold values of photoperiodic time-measurements correspond approximately to moonlight intensities. Experiments with Glycine and Euglena reveal that this is also the threshold value for synchronization of the circadian cycle. Saturation of this reaction is reached with 10 lx in 12:12 hr light-dark cycles. Thus, moonlight might disturb time measurement.In Glycine, Arachis, and Trifolium the intensity of the light coming from the moon to the upper surface of the leaf is reduced by circadian leaf movement to values between 5 and 20 per cent (or even less than 5 per cent) of full-moon light intensity. Such a reduction eliminates the disturbing effects of moonlight. This finding indicates that leaf movements have an adaptive value of the kind that Darwin sought to identify. It also indicates that the behavior of the upper leaf epidermis as a “sense organ for light”(13) has an adaptive value.In the short-day plants Perilla ocymoides and Chenopodium amaranticolor, a specific photoperiodic phenomenon was found that counteracts the disturbing effect of moonlight. Here light intensities similar to those of moonlight, introduced during the night, promote flowering instead of inhibiting it.  
  Address Institute Of Biology, University Of Tubingen, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16591742; PMCID:PMC223607 Approved no  
  Call Number GFZ @ kyba @ Serial 3035  
Permanent link to this record
 

 
Author Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. url  doi
openurl 
  Title Artificial light at night as a new threat to pollination Type Journal Article
  Year 2017 Publication Nature Abbreviated Journal Nature  
  Volume 548 Issue 7666 Pages 206-209  
  Keywords Plants; Animals  
  Abstract Pollinators are declining worldwide and this has raised concerns for a parallel decline in the essential pollination service they provide to both crops and wild plants. Anthropogenic drivers linked to this decline include habitat changes, intensive agriculture, pesticides, invasive alien species, spread of pathogens and climate change1. Recently, the rapid global increase in artificial light at night has been proposed to be a new threat to terrestrial ecosystems; the consequences of this increase for ecosystem function are mostly unknown. Here we show that artificial light at night disrupts nocturnal pollination networks and has negative consequences for plant reproductive success. In artificially illuminated plant–pollinator communities, nocturnal visits to plants were reduced by 62% compared to dark areas. Notably, this resulted in an overall 13% reduction in fruit set of a focal plant even though the plant also received numerous visits by diurnal pollinators. Furthermore, by merging diurnal and nocturnal pollination sub-networks, we show that the structure of these combined networks tends to facilitate the spread of the negative consequences of disrupted nocturnal pollination to daytime pollinator communities. Our findings demonstrate that artificial light at night is a threat to pollination and that the negative effects of artificial light at night on nocturnal pollination are predicted to propagate to the diurnal community, thereby aggravating the decline of the diurnal community. We provide perspectives on the functioning of plant–pollinator communities, showing that nocturnal pollinators are not redundant to diurnal communities and increasing our understanding of the human-induced decline in pollinators and their ecosystem service.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1696  
Permanent link to this record
 

 
Author Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. url  doi
openurl 
  Title LEDs for photons, physiology and food Type Journal Article
  Year 2018 Publication Nature Abbreviated Journal Nature  
  Volume 563 Issue 7732 Pages 493-500  
  Keywords Lighting; Human Health; Plants; Review  
  Abstract Lighting based on light-emitting diodes (LEDs) not only is more energy efficient than traditional lighting, but also enables improved performance and control. The colour, intensity and distribution of light can now be controlled with unprecedented precision, enabling light to be used both as a signal for specific physiological responses in humans and plants, and as an efficient fuel for fresh food production. Here we show how a broad and improved understanding of the physiological responses to light will facilitate greater energy savings and provide health and productivity benefits that have not previously been associated with lighting.  
  Address Utah State University, Logan, UT, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30464269 Approved no  
  Call Number GFZ @ kyba @ Serial 2110  
Permanent link to this record
 

 
Author Taylor, G.; Davies, W.J. url  doi
openurl 
  Title The Control Of Leaf Growth Of Betula And Acer By Photoenvironment Type Journal Article
  Year 1985 Publication New Phytologist Abbreviated Journal New Phytol  
  Volume 101 Issue 2 Pages 259-268  
  Keywords Plants  
  Abstract Leaf extension of one‐year‐old seedlings of silver birch (Betula pendula Roth.) and sycamore (Acer pseudoplatanus L.), was measured using linear variable transducers (LVDTs) interfaced to a microcomputer. Birch and sycamore seedlings exhibited contrasting patterns of leaf extension during a diurnal cycle with a 16 h photoperiod. Birch leaves grew more rapidly when illuminated; growth during the photoperiod was approximately doubled when compared with growth in the dark. Mean relative growth rates ±SE at ‘lights‐on + 3 h’ and ‘lights‐off + 5 h’ were 0.0136 ± 0.0016 and 0.0066 ± 0.0005 h−1 respectively. In direct contrast, growth of sycamore leaves was increased when leaves were darkened; mean relative growth rates + SE at ‘lights‐on+3 h’ and ‘lights‐off + 5 h’ were 0.0056 ± 0.0005 and 0.0094 ± 0.0008 h‐1 respectively.

When leaves of birch and sycamore were darkened, increased leaf turgor was measured in both species, but only in sycamore was this higher night‐time turgor associated with a higher rate of leaf growth.

Cell wall extensibility (WEX), an indication of the ability of cell walls to loosen and extend irreversibly, and cell surface pH were assessed in darkened and illuminated leaves of both species. An increase in WEX was measured when birch leaves were illuminated (P≤ 0.001) and this was accompanied by a decline in cell surface pH (P≤ 0.001). However, when leaves of sycamore were illuminated, WEX declined (P≤ 005) and cell surface pH increased (P≤ 0.001).

The ability of these species to survive beneath a woodland canopy is discussed in relation to the cellular factors controlling their leaf growth.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1992  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: