|   | 
Details
   web
Records
Author Nelson, J.A.; Bugbee, B.
Title Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal PLoS One
Volume 9 Issue (up) 6 Pages e99010
Keywords Plants
Abstract Lighting technologies for plant growth are improving rapidly, providing numerous options for supplemental lighting in greenhouses. Here we report the photosynthetic (400-700 nm) photon efficiency and photon distribution pattern of two double-ended HPS fixtures, five mogul-base HPS fixtures, ten LED fixtures, three ceramic metal halide fixtures, and two fluorescent fixtures. The two most efficient LED and the two most efficient double-ended HPS fixtures had nearly identical efficiencies at 1.66 to 1.70 micromoles per joule. These four fixtures represent a dramatic improvement over the 1.02 micromoles per joule efficiency of the mogul-base HPS fixtures that are in common use. The best ceramic metal halide and fluorescent fixtures had efficiencies of 1.46 and 0.95 micromoles per joule, respectively. We also calculated the initial capital cost of fixtures per photon delivered and determined that LED fixtures cost five to ten times more than HPS fixtures. The five-year electric plus fixture cost per mole of photons is thus 2.3 times higher for LED fixtures, due to high capital costs. Compared to electric costs, our analysis indicates that the long-term maintenance costs are small for both technologies. If widely spaced benches are a necessary part of a production system, the unique ability of LED fixtures to efficiently focus photons on specific areas can be used to improve the photon capture by plant canopies. Our analysis demonstrates, however, that the cost per photon delivered is higher in these systems, regardless of fixture category. The lowest lighting system costs are realized when an efficient fixture is coupled with effective canopy photon capture.
Address Crop Physiology Laboratory, Department of Plant Soils and Climate, Utah State University, Logan, Utah, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:24905835; PMCID:PMC4048233 Approved no
Call Number GFZ @ kyba @ Serial 2233
Permanent link to this record
 

 
Author Adams, J.
Title Some Further Experiments On The Relation Of Light To Growth Type Journal Article
Year 1925 Publication American Journal of Botany Abbreviated Journal American Journal of Botany
Volume 12 Issue (up) 7 Pages 398-412
Keywords Plants
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9122 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2393
Permanent link to this record
 

 
Author Xu, C.; Wang, H.-J.; Yu, Q.; Wang, H.-Z.; Liang, X.-M.; Liu, M.; Jeppesen, E.
Title Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes Type Journal Article
Year 2019 Publication Water Abbreviated Journal Water
Volume 11 Issue (up) 7 Pages 1512
Keywords Plants
Abstract Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2606
Permanent link to this record
 

 
Author Li, X.T., Chen, B., Wang, H.J., Zheng, G., Yang, D., Miao, X.Y., & Xu, C.
Title Effects of urban nighttime light on the growth of Cinnamomum camphora Type Journal Article
Year 2019 Publication Ying Yong Sheng Tai Xue Bao Abbreviated Journal
Volume 30 Issue (up) 7 Pages 2284-2290
Keywords Plants
Abstract To understand the effects of urban artificial nighttime light on the growth of evergreen trees, we conducted a field investigation in a typical urban street planted with Cinnamomum camphora (a common evergreen street tree species in eastern China) in the Nanjing City, China. Along the street, trees from two types of growing locations with contrasting distances from the street lamp (just under the lamp vs. between two adjacent lamps) were selected. The growth-related plant functional traits were measured and compared. The results showed that trees grown under the lamp had a mean diameter at beast height (DBH) of 16.8 cm, current-year branch productivity (CBP) of 309.4 g·m-2, current-year leaf productivity (CLP) of 241.5 g·m-2, and leaf relative chlorophyll content (LCC) of 34.6 SPAD. Trees grown between lamps had a mean DBH of 15.5 cm, CBP of 273.4 g·m-2, CLP of 212.8 g·m-2, and LCC of 33.1 SPAD. DBH, CBP, CLP and LCC of the trees under the lamp were significantly higher than those between lamps. There was no significant difference in specific leaf area between trees from the two locations. Our results suggested that urban artificial nighttime light could promote the growth of C. camphora, and alter sunlight-determined characteristics of canopy growth vigor.

为了解常绿乔木对城市夜间灯光的生长响应,以华东地区典型常绿行道树种香樟为对象,研究南京市一条典型道路上近灯处(路灯正下方)和远灯处(两相邻路灯中间位置)生长区位的夜间光照强度差异性对香樟生长性状的影响.结果表明: 近灯处香樟的平均胸径为16.8 cm,当年生小枝总生产力为309.4 g·m-2,当年生叶片生产力为241.5 g·m-2,叶片相对叶绿素含量为34.6 SPAD.远灯处香樟的平均胸径为15.5 cm,当年生小枝总生产力为273.4 g·m-2,当年生叶片生产力为212.8 g·m-2,叶片相对叶绿素含量为33.1 SPAD.近灯处香樟的平均胸径、当年生小枝总生产力、当年生叶片生产力及叶片相对叶绿素含量均显著高于远灯处.两处树木间比叶面积没有显著差异.夜间灯光的补充照明促进了近灯处香樟的生长,并改变了树冠生长对阳光的响应特征.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Chinese Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2728
Permanent link to this record
 

 
Author Mayoral, O.; Solbes, J.; Cantó, J.; Pina, T.
Title What Has Been Thought and Taught on the Lunar Influence on Plants in Agriculture? Perspective from Physics and Biology Type Journal Article
Year 2020 Publication Agronomy Abbreviated Journal Agronomy
Volume 10 Issue (up) 7 Pages 955
Keywords Moonlight; Plants
Abstract This paper reviews the beliefs which drive some agricultural sectors to consider the lunar influence as either a stress or a beneficial factor when it comes to organizing their tasks. To address the link between lunar phases and agriculture from a scientific perspective, we conducted a review of textbooks and monographs used to teach agronomy, botany, horticulture and plant physiology; we also consider the physics that address the effects of the Moon on our planet. Finally, we review the scientific literature on plant development, specifically searching for any direct or indirect reference to the influence of the Moon on plant physiology. We found that there is no reliable, science-based evidence for any relationship between lunar phases and plant physiology in any plant–science related textbooks or peer-reviewed journal articles justifying agricultural practices conditioned by the Moon. Nor does evidence from the field of physics support a causal relationship between lunar forces and plant responses. Therefore, popular agricultural practices that are tied to lunar phases have no scientific backing. We strongly encourage teachers involved in plant sciences education to objectively address pseudo-scientific ideas and promote critical thinking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4395 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3036
Permanent link to this record