|   | 
Details
   web
Records
Author Viera-Perez, M.; Hernandez-Calvento, L.; Hesp, P.A.; Santana-Del Pino, A.
Title Effects of artificial light on flowering of foredune vegetation Type Journal Article
Year 2019 Publication Ecology Abbreviated Journal Ecology
Volume 100 Issue (up) 5 Pages e02678
Keywords Plants; Coastal management; coastal dunes; Canary Islands; Spain; Europe
Abstract The impact of ecological light pollution involves alteration of periods of natural light, a fact that has proven effects on ecosystems. Few studies have focused on the impact of this pollution on wild plant species, and none on coastal dune plants. Many coastal dunes and their plants are adjacent to tourist areas, and these might be affected by light pollution. Such is the case of the Natural Reserve Dunas de Maspalomas (Gran Canaria), where some individuals of the plant species Traganum moquinii, located in the El Ingles beach foredune zone, are affected by light pollution. This study examines the effect of light pollution on the flowering process, and by extension the reproductive cycle of these plants. Plants located closer to high artificial illumination sources receive ~2120 hours per year of intense light more than plants located furthest from those artificial lighting sources. Parts of the plants of Traganum moquinii exposed directly to the artificial light show a significant decrease in the production of flowers, compared to the parts in plants in shade, and to the plants more distant from artificial lights. In consequence, plants exposed more directly to artificial light have a lower potential for seed reproduction. The spectrum of artificial light also affects the plants, and light between 600 and 700 nm primarily affects the reproductive cycle of the Traganum moquinii species. The implications for the ecological and geomorphological functioning of the dune system are discussed, because this species plays a decisive role in the formation of foredune zones and nebkhas in arid dune systems.
Address Departamento de Matematicas, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes PMID:30825328 Approved no
Call Number GFZ @ kyba @ Serial 2244
Permanent link to this record
 

 
Author Myers, L.; Christian, K.; Kirchner, R.
Title Flowering responses of 48 lines of oilseed rape (Brassica spp.) to vernalization and daylength Type Journal Article
Year 1982 Publication Australian Journal of Agricultural Research Abbreviated Journal Aust. J. Agric. Res.
Volume 33 Issue (up) 6 Pages 927
Keywords Plants
Abstract Forty-eight lines of Brassica spp, of diverse origins were grown in the glasshouse either under natural daylengths or daylengths extended to 16 h by artificial illumination. Plants were either unvernalized or had been subjected to 6 weeks at 8¦C day and 6¦C night temperatures as seedlings. Lines could be classified into two major groups, according to whether or not vernalization or long photoperiods were essential for 50% flowering within 21 weeks. In six lines, both vernalization and long days were essential for prompt flowering, while only five lines did not respond to either treatment. Strong interactions between lines and treatments were found in the number of leaves and subtended buds at flowering. The results show that a wide range of responses is obtainable from material currently available, offering considerabk, scope for adaptation to different environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-9409 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2369
Permanent link to this record
 

 
Author Matzke, E. B.
Title The Effect of Street Lights in Delaying Leaf-Fall in Certain Trees Type Journal Article
Year 1936 Publication American Journal of Botany Abbreviated Journal Amer. J. of Botany
Volume 23 Issue (up) 6 Pages 446-452
Keywords Plants; trees; Carolina poplar; Populus canadensis; London plane; Platanus acerifolia; sycamore; Platanus occidentalis; crack willow; Salix fragilis; New York; New York City
Abstract Street lights in the City of New York cause a retention of the leaves of certain trees: Carolina poplar (Populus canadensis), London plane (Platanus acerifolia), sycamore (Platanus occidentalis), and crack willow (Salix fragilis). Illuminated portions of a tree retain their leaves; shaded portions of the same tree do not. One side of a tree, or the lower part, may thus have numerous leaves, while the other side, and the upper part, may be entirely devoid of foliage. A relatively weak light, at a distance of as much as 45 feet from the tip of the nearest branch, may cause retention of numerous leaves. Light intensity as low as 1 foot candle, or less, may be effective. Some leaves may be retained at least a month, others more than that, beyond the normal season. The orientation of the light with respect to the tree – i.e., north, east, south, and west – is not significant. In Populus canadensis all of the leaves ultimately fall, abscission apparently taking place at the base of the petiole. In Platanus acerifolia and Platanus occidentalis some of the leaves are retained until killed by low temperature; then some of them break off above the base of the petiole. Leaves of the Populus and Platanus species discussed remain green unusually long when receiving additional illumination. Leaves of these same trees do not emerge from the buds earlier in the spring as a result of the additional illumination.
Address n/a
Corporate Author Thesis
Publisher JSTOR Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9122 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1394
Permanent link to this record
 

 
Author Son, K.-H.; Jeon, Y.-M.; Oh, M.-M.
Title Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting Type Journal Article
Year 2016 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 57 Issue (up) 6 Pages 560-572
Keywords Plants
Abstract Light-emitting diodes (LEDs) are currently undergoing rapid development as plant growth light sources in a plant factory with artificial lighting (PFAL). However, little is known about the effects of supplementary light and pulsed LEDs on plant growth, bioactive compound productions, and energy efficiency in lettuce. In this study, we aimed to determine the effects of supplementary white LEDs (study I) and pulsed LEDs (study II) on red leaf lettuce (Lactuca sativa L. ‘Sunmang’). In study I, six LED sources were used to determine the effects of supplementary white LEDs (RGB 7:1:1, 7:1:2, RWB 7:1:2, 7:2:1, 8:1:1, 8:2:0 [based on chip number] on lettuce). Fluorescent lamps were used as the control. In study II, pulsed RWB 7:2:1 LED treatments (30, 10, 1 kHz with a 50 or 75% duty ratio) were applied to lettuce. In study I, the application of red and blue fractions improved plant growth characteristics and the accumulation of antioxidant phenolic compounds, respectively. In addition, the application of green light increased plant growth, including the fresh and dry weights of shoots and roots, as well as leaf area. However, the substitution of green LEDs with white LEDs induced approximately 3.4-times higher light and energy use efficiency. In study II, the growth characteristics and photosynthesis of lettuce were affected by various combinations of duty ratio and frequency. In particular, biomass under a 1 kHz 75% duty ratio of pulsed LEDs was not significantly different from that of the control (continuous LEDs). Moreover, no significant difference in leaf photosynthetic rate was observed between any pulsed LED treatment utilizing a 75% duty ratio versus continuous LEDs. However, some pulsed LED treatments may potentially improve light and energy use efficiency compared to continuous LEDs. These results suggest that the fraction of red, blue, and green wavelengths of LEDs is an important factor for plant growth and the biosynthesis of bioactive compounds in lettuce and that supplementary white LEDs (based on a combination of red and blue LEDs) might be more suitable as a commercial lighting source than green LEDs. In addition, the use of suitable pulses of LEDs might save energy while inducing plant growth similar to that under continuous LEDs. Our findings provide important basic information for designing optimal light sources for use in a PFAL.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1615
Permanent link to this record
 

 
Author Patel, J.S.; Radetsky, L.; Rea, M.S.
Title The Value of Red Light at Night for Increasing Basil Yield Type Journal Article
Year 2018 Publication Canadian Journal of Plant Science Abbreviated Journal Can. J. Plant Sci.
Volume 98 Issue (up) 6 Pages 1321-1330
Keywords Plants
Abstract Sweet basil (<i>Ocimum basilicum L.</i>) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by <i>Peronospora belbahrii</i>. Nighttime exposure to red light has been shown to inhibit sporulation of <i>P. belbahrii</i>. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (LEDs; λ<sub>max</sub> = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density (PPFD) of 60 µmol m<sup>-2</sup> s<sup>-1</sup> during the otherwise dark night for 10 hours (from 20:00 to 06:00). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight, compared to plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-4220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1955
Permanent link to this record