|   | 
Details
   web
Records
Author Kwak, M.J.; Lee, S.H.; Khaine, I.; Je, S.M.; Lee, T.Y.; You, H.N.; Lee, H.K.; Jang, J.H.; Kim, I.; Woo, S.Y.
Title Stomatal movements depend on interactions between external night light cue and internal signals activated by rhythmic starch turnover and abscisic acid (ABA) levels at dawn and dusk Type Journal Article
Year 2017 Publication Acta Physiologiae Plantarum Abbreviated Journal Acta Physiol Plant
Volume 39 Issue 8 Pages
Keywords (down) Plants
Abstract Yellow poplar (Liriodendron tulipifera L.) is a widespread hardwood tree of great ecological and economic value. Light pollution caused by excessive and indiscriminate exposure to artificial night light has emerged as a new risk factor due to its adverse effects related to energy waste, sleep disorders, anthropogenic habitat disturbance, and perceptual disorder of daily and seasonal rhythms in wildlife. However, it remains unknown how associations between artificial night light and stomatal behaviors controlled by internal signals are established. After continuous exposure to artificial light at night over 3 years, leaves in the experimental set-up were measured for stomatal movements, starch turnover, endogenous abscisic acid (ABA) levels, and chloroplast ultrastructure during the growing season. Yellow poplar showed dynamic changes in stomatal movement, starch turnover, and endogenous ABA levels in response to day/artificial night light cycle, resulting in reduction of circadian phase-shifting capacity at both dusk and dawn and normal chloroplast development as compared with natural night. Nighttime light exposure may act as a major factor for disorder of circadian and circannual rhythms as well as physiological and ultrastructural repressor in plants, via a modification of the perceived photoperiod. Our study suggests that these dynamic responses can provide advantageous insights that complement the current knowledge on light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0137-5881 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1682
Permanent link to this record
 

 
Author Skvareninová, J.; Tuhárska, M.; Skvarenina, J.; Babálová, D.; Slobodníková, L.; Slobodník, B.; Stredová, H.; Mindas, J.
Title Effects of light pollution on tree phenology in the urban environment Type Journal Article
Year 2017 Publication Moravian Geographical Reports Abbreviated Journal
Volume 25 Issue 4 Pages
Keywords (down) Plants
Abstract Research on urban climates has been an important topic in recent years, given the growing number of city inhabitants and significant influences of climate on health. Nevertheless, far less research has focused on the impacts of light pollution, not only on humans, but also on plants and animals in the landscape. This paper reports a study measuring the intensity of light pollution and its impact on the autumn phenological phases of tree species in the town of Zvolen (Slovakia). The research was carried out at two housing estates and in the central part of the town in the period 2013–2016. The intensity of ambient nocturnal light at 18 measurement points was greater under cloudy weather than in clear weather conditions. Comparison with the ecological standard for Slovakia showed that average night light values in the town centre and in the housing estate with an older type of public lighting, exceeded the threshold value by 5 lux. Two tree species, sycamore maple (Acer pseudoplatanus L.) and staghorn sumac (Rhus typhina L.), demonstrated sensitivity to light pollution. The average onset of the autumn phenophases in the crown parts situated next to the light sources was delayed by 13 to 22 days, and their duration was prolonged by 6 to 9 days. There are three major results: (i) the effects of light pollution on organisms in the urban environment are documented; (ii) the results provide support for a theoretical and practical basis for better urban planning policies to mitigate light pollution effects on organisms; and (iii) some limits of the use of plant phenology as a bioindicator of climate change are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1210-8812 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1799
Permanent link to this record
 

 
Author Kwak, M.; Je, S.; Cheng, H.; Seo, S.; Park, J.; Baek, S.; Khaine, I.; Lee, T.; Jang, J.; Li, Y.; Kim, H.; Lee, J.; Kim, J.; Woo, S.
Title Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting Type Journal Article
Year 2018 Publication Forests Abbreviated Journal Forests
Volume 9 Issue 2 Pages 74
Keywords (down) Plants
Abstract Plants can undergo external fluctuations in the natural light and dark cycle. The photosynthetic apparatus needs to operate in an appropriate manner to fluctuating environmental factors, especially in light. Yellow-poplar seedlings were exposed to nighttime artificial high-pressure sodium (HPS) lighting to evaluate night light-adaptation strategies for photosynthetic apparatus fitness relative to pigment contents, photosystem II photochemistry, photosynthetic parameters, histochemical analysis of reactive oxygen species, and plant biomass. As a result, seedlings exhibited dynamic changes including the enhancement of accessory pigments, the reduction of photosystem II photochemistry, increased stomatal limitation, downregulation of photosynthesis, and the decreased aboveground and belowground biomass under artificial night lighting. Histochemical analysis with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining indicates the accumulation of in situ superoxide radicals (O2−) and hydrogen peroxide (H2O2) in leaves exposed to the lowest level of artificial night lighting compared to control. Moreover, these leaves exposed to artificial night lighting had a lower nighttime respiration rate. These results indicated that HPS lighting during the night may act as a major factor as repressors of the fitness of photosynthesis and growth patterns, via a modification of the photosynthetic light harvesting apparatus.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1999-4907 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1809
Permanent link to this record
 

 
Author Brelsford, CC; Robson, TM
Title Blue light advances bud burst in branches of three deciduous tree species under short-day conditions Type Journal Article
Year 2018 Publication Trees Abbreviated Journal
Volume 32 Issue 4 Pages 1157-1164
Keywords (down) Plants
Abstract During spring, utilising multiple cues allow tree species from temperate and boreal regions to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400–500 nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp., the effects of blue light on spring-time bud burst of deciduous tree species have not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in tree species, and that late-successional species would respond more than early-successional species, whose bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400–700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1847
Permanent link to this record
 

 
Author Flowers, N.D.; Gibson, D.J.
Title Quantified effects of artificial versus natural nighttime lighting on the Eurasian grassesBothriochloa bladhii(Poaceae) andBothriochloa ischaemum(Poaceae) and the North American grassesPanicum virgatum(Poaceae) andSorghastrum nutans(Poaceae) Type Journal Article
Year 2018 Publication The Journal of the Torrey Botanical Society Abbreviated Journal The Journal of the Torrey Botanical Society
Volume 145 Issue 2 Pages 147-155
Keywords (down) Plants
Abstract Artificial nighttime lighting (light pollution) is increasing worldwide and may have undocumented consequences. In this study, we asked if artificial nighttime lighting affects the performance in monoculture of four grass species: the Eurasian Bothriochloa bladhii (Retz.) S.T. Blake (Poaceae), and Bothriochloa ischaemum (L.) Keng (Poaceae); and the North American Panicum virgatum (L.) (Poaceae), and Sorghastrum nutans (L.) Nash (Poaceae). We conducted a field pot experiment to test for the effects of artificial nighttime lighting and plant density on height, biomass, and leaf number. Height of the tallest individual per population was affected by separate interactions between species and density, light, and time. Final total biomass per individual biomass was increased under nighttime lighting, but more so at low density. Leaf number was increased by artificial nighttime lighting irrespective of species. These results suggest that artificial nighttime lighting may have previously undocumented influences on plant height, biomass, and leaf number within certain species. These findings warrant more in-depth studies into the role that artificial nighttime lighting can have on various plant species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-5674 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1902
Permanent link to this record