|   | 
Details
   web
Records
Author Giavi, S.; Blosch, S.; Schuster, G.; Knop, E.
Title Artificial light at night can modify ecosystem functioning beyond the lit area Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 11870
Keywords (up) plants; ecology
Abstract Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.
Address Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland. eva.knop@ieu.uzh.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32681056; PMCID:PMC7368033 Approved no
Call Number GFZ @ kyba @ Serial 3076
Permanent link to this record
 

 
Author Maggi, E.; Bertocci, I.; Benedetti-Cecchi, L.
Title Light pollution enhances temporal variability of photosynthetic activity in mature and developing biofilm Type Journal Article
Year 2020 Publication Hydrobiologia Abbreviated Journal Hydrobiologia
Volume 847 Issue 7 Pages 1793-1802
Keywords (up) Plants; Ecology
Abstract Artificial light at night (ALAN) has been recently recognized as a threat for aquatic systems, but a comprehensive knowledge of its effects is still lacking. A fundamental question is whether and how ALAN might affect temporal variability of communities, thus undermining the stability of mature assemblages or influencing the colonization process. Here we investigated the role of ALAN on temporal variability of total biomass and maximum photosynthetic efficiency of marine autotrophic biofilms colonizing Mediterranean high-shore rock surfaces while controlling for density of their main grazers. Results showed stability in total biomass, but an increase in maximum photosynthetic efficiency from unlit to lit conditions, which suggested a temporal change in composition and/or abundance of different taxa within mature assemblages. The effect was weaker during the colonization process; in this case, density of grazers acted in the opposite direction of ALAN. We suggest that the addition of light at times when it would not be naturally present may affect the temporal variability of a variety of functioning in aquatic systems, depending on species-specific sensitivities to ALAN within microbial assemblages and/or indirect effects mediated by their consumers. We highlight to further investigate the role of this emergent topic in aquatic ecology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-8158 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3146
Permanent link to this record
 

 
Author Boom, M.P.; Spoelstra, K.; Biere, A.; Knop, E.; Visser, M.E.
Title Pollination and fruit infestation under artificial light at night:light colour matters Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 18389
Keywords (up) Plants; Ecology
Abstract Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light-dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant-insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant-insect interactions in the Silene latifolia-Hadena bicruris system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by Hadena bicruris, a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by H. bicruris was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant-insect interactions differently, with direct consequences for plant fitness.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands. m.visser@nioo.knaw.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33110135; PMCID:PMC7591485 Approved no
Call Number GFZ @ kyba @ Serial 3189
Permanent link to this record
 

 
Author Dzakovich, M.; Gómez, C.; Mitchell, C.
Title Tomatoes Grown with Light-emitting Diodes or High-pressure Sodium Supplemental Lights have Similar Fruit-quality Attributes Type Journal Article
Year 2015 Publication HortScience Abbreviated Journal HortScience
Volume 50 Issue 10 Pages 1498-1502
Keywords (up) Plants; greenhouse tomato production; HPS; LED; physicochemical testing; sensory panels; Solanum lycopersium; tomato; high-pressure sodium; agriculture; horticulture; light-emitting diode
Abstract Light-emitting diodes (LEDs) are an attractive alternative to high-pressure sodium (HPS) lamps for plant growth because of their energy-saving potential. However, the effects of supplementing broad-waveband solar light with narrow-waveband LED light on the sensory attributes of greenhouse-grown tomatoes (Solanum lycopersicum) are largely unknown. Three separate studies investigating the effect of supplemental light quantity and quality on physicochemical and organoleptic properties of greenhouse-grown tomato fruit were conducted over 4- or 5-month intervals during 2012 and 2013. Tomato cultivars Success, Komeett, and Rebelski were grown hydroponically within a high-wire trellising system in a glass-glazed greenhouse. Chromacity, Brix, titratable acidity, electrical conductivity (EC), and pH measurements of fruit extracts indicated plant response differences between lighting treatments. In sensory panels, tasters ranked tomatoes for color, acidity, and sweetness using an objective scale, whereas color, aroma, texture, sweetness, acidity, aftertaste, and overall approval were ranked using hedonic scales. By collecting both physicochemical as well as sensory data, this study was able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality. Sensory panels indicated that statistically significant physicochemical differences were not noticeable to tasters and that tasters engaged in blind testing could not discern between tomatoes from different supplemental lighting treatments or unsupplemented controls. Growers interested in reducing supplemental lighting energy consumption by using intracanopy LED (IC-LED) supplemental lighting need not be concerned that the quality of their tomato fruits will be negatively affected by narrow-band supplemental radiation at the intensities and wavelengths used in this study.
Address Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907-2010
Corporate Author Thesis
Publisher American Society for Horticultural Science Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-5345 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1301
Permanent link to this record
 

 
Author Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G.
Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 21 Issue 2 Pages
Keywords (up) Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity
Abstract Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.
Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:31936535 Approved no
Call Number GFZ @ kyba @ Serial 2818
Permanent link to this record