toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Caffarra, A.; Donnelly, A. url  doi
openurl 
  Title The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst Type Journal Article
  Year 2011 Publication International Journal of Biometeorology Abbreviated Journal Int J Biometeorol  
  Volume 55 Issue 5 Pages 711-721  
  Keywords (up) Plants  
  Abstract The process of adaptation is the result of stabilising selection caused by two opposite forces: protection against an unfavourable season (survival adaptation), and effective use of growing resources (capacity adaptation). As plant species have evolved different life strategies based on different trade offs between survival and capacity adaptations, different phenological responses are also expected among species. The aim of this study was to compare budburst responses of two opportunistic species (Betula pubescens, and Salix x smithiana) with that of two long-lived, late successional species (Fagus sylvatica and Tilia cordata) and consider their ecological significance. Thus, we performed a series of experiments whereby temperature and photoperiod were manipulated during dormancy. T. cordata and F. sylvatica showed low rates of budburst, high chilling requirements and responsiveness to light intensity, while B. pubescens and S. x smithiana had high rates of budburst, low chilling requirements and were not affected by light intensity. In addition, budburst in B. pubescens and S. x smithiana was more responsive to high forcing temperatures than in T. cordata and F. sylvatica. These results suggest that the timing of growth onset in B. pubescens and S. x smithiana (opportunistic) is regulated through a less conservative mechanism than in T. cordata and F. sylvatica (long-lived, late successional), and that these species trade a higher risk of frost damage for the opportunity of vigorous growth at the beginning of spring, before canopy closure. This information should be considered when assessing the impacts of climate change on vegetation or developing phenological models.  
  Address Department of Botany, School of Natural Sciences, Trinity College Dublin, Ireland. amelia.caffarra@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7128 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21113629 Approved no  
  Call Number LoNNe @ kyba @ Serial 1675  
Permanent link to this record
 

 
Author Kwak, M.J.; Lee, S.H.; Khaine, I.; Je, S.M.; Lee, T.Y.; You, H.N.; Lee, H.K.; Jang, J.H.; Kim, I.; Woo, S.Y. url  doi
openurl 
  Title Stomatal movements depend on interactions between external night light cue and internal signals activated by rhythmic starch turnover and abscisic acid (ABA) levels at dawn and dusk Type Journal Article
  Year 2017 Publication Acta Physiologiae Plantarum Abbreviated Journal Acta Physiol Plant  
  Volume 39 Issue 8 Pages  
  Keywords (up) Plants  
  Abstract Yellow poplar (Liriodendron tulipifera L.) is a widespread hardwood tree of great ecological and economic value. Light pollution caused by excessive and indiscriminate exposure to artificial night light has emerged as a new risk factor due to its adverse effects related to energy waste, sleep disorders, anthropogenic habitat disturbance, and perceptual disorder of daily and seasonal rhythms in wildlife. However, it remains unknown how associations between artificial night light and stomatal behaviors controlled by internal signals are established. After continuous exposure to artificial light at night over 3 years, leaves in the experimental set-up were measured for stomatal movements, starch turnover, endogenous abscisic acid (ABA) levels, and chloroplast ultrastructure during the growing season. Yellow poplar showed dynamic changes in stomatal movement, starch turnover, and endogenous ABA levels in response to day/artificial night light cycle, resulting in reduction of circadian phase-shifting capacity at both dusk and dawn and normal chloroplast development as compared with natural night. Nighttime light exposure may act as a major factor for disorder of circadian and circannual rhythms as well as physiological and ultrastructural repressor in plants, via a modification of the perceived photoperiod. Our study suggests that these dynamic responses can provide advantageous insights that complement the current knowledge on light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0137-5881 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1682  
Permanent link to this record
 

 
Author Skvareninová, J.; Tuhárska, M.; Skvarenina, J.; Babálová, D.; Slobodníková, L.; Slobodník, B.; Stredová, H.; Mindas, J. url  doi
openurl 
  Title Effects of light pollution on tree phenology in the urban environment Type Journal Article
  Year 2017 Publication Moravian Geographical Reports Abbreviated Journal  
  Volume 25 Issue 4 Pages  
  Keywords (up) Plants  
  Abstract Research on urban climates has been an important topic in recent years, given the growing number of city inhabitants and significant influences of climate on health. Nevertheless, far less research has focused on the impacts of light pollution, not only on humans, but also on plants and animals in the landscape. This paper reports a study measuring the intensity of light pollution and its impact on the autumn phenological phases of tree species in the town of Zvolen (Slovakia). The research was carried out at two housing estates and in the central part of the town in the period 2013–2016. The intensity of ambient nocturnal light at 18 measurement points was greater under cloudy weather than in clear weather conditions. Comparison with the ecological standard for Slovakia showed that average night light values in the town centre and in the housing estate with an older type of public lighting, exceeded the threshold value by 5 lux. Two tree species, sycamore maple (Acer pseudoplatanus L.) and staghorn sumac (Rhus typhina L.), demonstrated sensitivity to light pollution. The average onset of the autumn phenophases in the crown parts situated next to the light sources was delayed by 13 to 22 days, and their duration was prolonged by 6 to 9 days. There are three major results: (i) the effects of light pollution on organisms in the urban environment are documented; (ii) the results provide support for a theoretical and practical basis for better urban planning policies to mitigate light pollution effects on organisms; and (iii) some limits of the use of plant phenology as a bioindicator of climate change are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1210-8812 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1799  
Permanent link to this record
 

 
Author Kwak, M.; Je, S.; Cheng, H.; Seo, S.; Park, J.; Baek, S.; Khaine, I.; Lee, T.; Jang, J.; Li, Y.; Kim, H.; Lee, J.; Kim, J.; Woo, S. url  doi
openurl 
  Title Night Light-Adaptation Strategies for Photosynthetic Apparatus in Yellow-Poplar (Liriodendron tulipifera L.) Exposed to Artificial Night Lighting Type Journal Article
  Year 2018 Publication Forests Abbreviated Journal Forests  
  Volume 9 Issue 2 Pages 74  
  Keywords (up) Plants  
  Abstract Plants can undergo external fluctuations in the natural light and dark cycle. The photosynthetic apparatus needs to operate in an appropriate manner to fluctuating environmental factors, especially in light. Yellow-poplar seedlings were exposed to nighttime artificial high-pressure sodium (HPS) lighting to evaluate night light-adaptation strategies for photosynthetic apparatus fitness relative to pigment contents, photosystem II photochemistry, photosynthetic parameters, histochemical analysis of reactive oxygen species, and plant biomass. As a result, seedlings exhibited dynamic changes including the enhancement of accessory pigments, the reduction of photosystem II photochemistry, increased stomatal limitation, downregulation of photosynthesis, and the decreased aboveground and belowground biomass under artificial night lighting. Histochemical analysis with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining indicates the accumulation of in situ superoxide radicals (O2−) and hydrogen peroxide (H2O2) in leaves exposed to the lowest level of artificial night lighting compared to control. Moreover, these leaves exposed to artificial night lighting had a lower nighttime respiration rate. These results indicated that HPS lighting during the night may act as a major factor as repressors of the fitness of photosynthesis and growth patterns, via a modification of the photosynthetic light harvesting apparatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1999-4907 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1809  
Permanent link to this record
 

 
Author Brelsford, CC; Robson, TM url  doi
openurl 
  Title Blue light advances bud burst in branches of three deciduous tree species under short-day conditions Type Journal Article
  Year 2018 Publication Trees Abbreviated Journal  
  Volume 32 Issue 4 Pages 1157-1164  
  Keywords (up) Plants  
  Abstract During spring, utilising multiple cues allow tree species from temperate and boreal regions to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400–500 nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp., the effects of blue light on spring-time bud burst of deciduous tree species have not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in tree species, and that late-successional species would respond more than early-successional species, whose bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400–700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1847  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: