|   | 
Details
   web
Records
Author Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M.
Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
Year 2011 Publication Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol
Volume 62 Issue Pages 335-364
Keywords (up) Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light
Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-5008 ISBN Medium
Area Expedition Conference
Notes PMID:21526969 Approved no
Call Number IDA @ john @ Serial 341
Permanent link to this record
 

 
Author Grenis, K.; Murphy, S.M.
Title Direct and indirect effects of light pollution on the performance of an herbivorous insect Type Journal Article
Year 2018 Publication Insect Science Abbreviated Journal Insect Sci
Volume 26 Issue 4 Pages 770-776
Keywords (up) Animals; Plants
Abstract Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences.
Address Department of Biological Sciences, University of Denver, Denver, Colorado, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1672-9609 ISBN Medium
Area Expedition Conference
Notes PMID:29425403 Approved no
Call Number GFZ @ kyba @ Serial 1865
Permanent link to this record
 

 
Author Margot, J.-L.
Title Insufficient Evidence of Purported Lunar Effect on Pollination in Ephedra Type Journal Article
Year 2015 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 30 Issue 5 Pages 454-456
Keywords (up) Animals; Plants; Moonlight
Abstract It has been suggested that the timing of pollination in Ephedra foeminea coincides with the full moon in July. The implication is that the plant can detect the full moon through light or gravity and that this trait is an evolutionary adaptation that aids the navigation by pollinating insects. Here we show that there are insufficient data to make such a claim, and we predict that pollinations of E. foeminea do not in general coincide with the full moon.
Address Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USADepartment of Physics and Astronomy, University of California, Los Angeles, California, USA jlm@astro.ucla.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:26316347 Approved no
Call Number LoNNe @ kyba @ Serial 1557
Permanent link to this record
 

 
Author Davies, T.W.; Smyth, T.
Title Why artificial light at night should be a focus for global change research in the 21st century Type Journal Article
Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 24 Issue 3 Pages 872-882
Keywords (up) Commentary; Animals; Plants
Abstract The environmental impacts of artificial light at night have been a rapidly growing field of global change science in recent years. Yet, light pollution has not achieved parity with other global change phenomena in the level of concern and interest it receives from the scientific community, government and nongovernmental organizations. This is despite the globally widespread, expanding and changing nature of night-time lighting and the immediacy, severity and phylogenetic breath of its impacts. In this opinion piece, we evidence 10 reasons why artificial light at night should be a focus for global change research in the 21st century. Our reasons extend beyond those concerned principally with the environment, to also include impacts on human health, culture and biodiversity conservation more generally. We conclude that the growing use of night-time lighting will continue to raise numerous ecological, human health and cultural issues, but that opportunities exist to mitigate its impacts by combining novel technologies with sound scientific evidence. The potential gains from appropriate management extend far beyond those for the environment, indeed it may play a key role in transitioning towards a more sustainable society.
Address Plymouth Marine Laboratory, Plymouth, Devon, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:29124824 Approved no
Call Number GFZ @ kyba @ Serial 2054
Permanent link to this record
 

 
Author Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M.
Title Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review: Moth pollination and light pollution Type Journal Article
Year 2014 Publication Ecological Entomology Abbreviated Journal Ecol Entomol
Volume 40 Issue 3 Pages 187–198
Keywords (up) Ecology; Agro-ecosystems; artificial night lighting; ecological networks; ecosystem services; flowering plants; food-webs; moths; population declines; plants; insects; pollination
Abstract 1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world.

2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted.

3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate.

4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested.
Address School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, U.K.
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0307-6946 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @; IDA @ john @ Serial 1084
Permanent link to this record