toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, B.; Zhang, H.; Jing, Q.; Wang, J. url  doi
openurl 
  Title Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.) Type Journal Article
  Year 2020 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 115 Issue Pages 106448  
  Keywords (up) Plants  
  Abstract Perennial ryegrass (Lolium perenne L.) was commonly used for urban green planting such as lawns, which was not only affected by sunlight, but also by light pollution caused by night artificial lighting. In order to see the ryegrass growth, physiological characters and chlorophyll fluorescence response to light pollution and provide the suitable lighting time, 6 different artificial lighting times (24/0 h, 22/2 h, 20/4 h, 18/6 h, 16/8 h and 14/10 h) were conducted in growth chambers. There were significant systematic differences in perennial ryegrass growth characters in seed germination rate, leaf length (LL) and leaf weight (LW) (F = 47.99, 28.34, 13.47, respectively; P < 0.01) while under 16/8h lighting time treatment which had the highest values and the increasing lighting time decreased the growth. It had the best effect under 16/8h lighting time treatment on leaf physiological reactions and also significant. The maximum curvature point temperature (TCC) was significant different (F = 28.08, P < 0.01). The relative variable fluorescence differences at 2 ms (VJ) was increased with the lighting time increased (F = 20.25, P < 0.01). The results of reaction center (RC) of PSII under 6 lighting times also had significant differences. For the result of the yield and efficiency of electron transport chain (ETC), Fv/Fm (φP0), ψ0 and φE0 showed the significantly increased trend with the lighting time decreased while the φD0 was decreased. The shape of the OJIP curves was sensitive to the lighting times which showed that with the increasing lighting times the chlorophyll fluorescence intensity changed and shifted the fluorescence curve lower. Leaf light-response curves (LC) were also significant under 6 lighting times. Significant positive correlations were found between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and J-I-P test chlorophyll fluorescence parameters (PIABS, ABS/RC and TR0/RC) except ET0/RC while the correlation with DI0/RC was significant negative. There were significant positive correlations between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and φP0, φE0, ψ0 while the relationships with φD0 were significantly negative. Nighttime artificial lighting acted as a depressor of the fitness of photosynthesis and growth characters, via the changing of the photosynthetic apparatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470160X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2905  
Permanent link to this record
 

 
Author Woolsey, S.; Capelli, F.; Gonser, T.; Hoehn, E.; Hostmann, M.; Junker, B.; Paetzold, A.; Roulier, C.; Schweizer, S.; Tiegs, S.D.; Tockner, K.; Weber, C.; Peter, A. url  doi
openurl 
  Title A strategy to assess river restoration success Type Journal Article
  Year 2007 Publication Freshwater Biology Abbreviated Journal Freshwater Biol  
  Volume 52 Issue 4 Pages 752-769  
  Keywords (up) Plants; evaluation guidelines; socio-economics; indicators; floodplain; decision making; bioassessment; sustainability; biodiversity  
  Abstract 1. Elaborate restoration attempts are underway worldwide to return human-impacted rivers to more natural conditions. Assessing the outcome of river restoration projects is vital for adaptive management, evaluating project efficiency, optimising future programmes and gaining public acceptance. An important reason why assessment is often omitted is lack of appropriate guidelines.

2. Here we present guidelines for assessing river restoration success. They are based on a total of 49 indicators and 13 specific objectives elaborated for the restoration of low- to mid-order rivers in Switzerland. Most of these objectives relate to ecological attributes of rivers, but socio-economic aspects are also considered.

3. A strategy is proposed according to which a set of indicators is selected from the total of 49 indicators to ensure that indicators match restoration objectives and measures, and that the required effort for survey and analysis of indicators is appropriate to the project budget.

4. Indicator values are determined according to methods described in detailed method sheets. Restoration success is evaluated by comparing indicator values before and after restoration measures have been undertaken. To this end, values are first standardised on a dimensionless scale ranging from 0 to 1, then averaged across different indicators for a given project objective, and finally assigned to one of five overall success categories.

5. To illustrate the application of this scheme, a case study on the Thur River, Switzerland, is presented. Seven indicators were selected to meet a total of five project objectives. The project was successful in achieving ‘provision of high recreational value’, ‘lateral connectivity’ and ‘vertical connectivity’ but failed to meet the objectives ‘morphological and hydraulic variability’ and ‘near natural abundance and diversity of fauna’. Results from this assessment allowed us to identify potential deficits and gaps in the restoration project. To gain information on the sensitivity of the assessment scheme would require a set of complementary indicators for each restoration objective.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0046-5070 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 662  
Permanent link to this record
 

 
Author Haag, C.R.; Riek, M.; Hottinger, J.W.; Pajunen, V.I.; Ebert, D. url  doi
openurl 
  Title Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age Type Journal Article
  Year 2005 Publication Genetics Abbreviated Journal Genetics  
  Volume 170 Issue 4 Pages 1809-1820  
  Keywords (up) Plants; Aging; Animals; Daphnia/*genetics/*physiology; *Genetic Variation; *Genetics, Population  
  Abstract If colonization of empty habitat patches causes genetic bottlenecks, freshly founded, young populations should be genetically less diverse than older ones that may have experienced successive rounds of immigration. This can be studied in metapopulations with subpopulations of known age. We studied allozyme variation in metapopulations of two species of water fleas (Daphnia) in the skerry archipelago of southern Finland. These populations have been monitored since 1982. Screening 49 populations of D. longispina and 77 populations of D. magna, separated by distances of 1.5-2180 m, we found that local genetic diversity increased with population age whereas pairwise differentiation among pools decreased with population age. These patterns persisted even after controlling for several potentially confounding ecological variables, indicating that extinction and recolonization dynamics decrease local genetic diversity and increase genetic differentiation in these metapopulations by causing genetic bottlenecks during colonization. We suggest that the effect of these bottlenecks may be twofold, namely decreasing genetic diversity by random sampling and leading to population-wide inbreeding. Subsequent immigration then may not only introduce new genetic material, but also lead to the production of noninbred hybrids, selection for which may cause immigrant alleles to increase in frequency, thus leading to increased genetic diversity in older populations.  
  Address Unite d'Ecologie et d'Evolution, Departement de Biologie, Universite de Fribourg, CH-1700 Fribourg, Switzerland. christoph.haag@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15937138; PMCID:PMC1449778 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 660  
Permanent link to this record
 

 
Author Rydin, C; Bolinder, K url  doi
openurl 
  Title Moonlight pollination in the gymnosperm Ephedra (Gnetales) Type Journal Article
  Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.  
  Volume 11 Issue 4 Pages 20140993  
  Keywords (up) Plants; anemophily; entomophily; lunar phases; nocturnal insects; lunar cycle; light at night; Ephedra; Ephedra distachya; pollination  
  Abstract Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.  
  Address Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1143  
Permanent link to this record
 

 
Author Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. url  doi
openurl 
  Title Artificial light at night as a new threat to pollination Type Journal Article
  Year 2017 Publication Nature Abbreviated Journal Nature  
  Volume 548 Issue 7666 Pages 206-209  
  Keywords (up) Plants; Animals  
  Abstract Pollinators are declining worldwide and this has raised concerns for a parallel decline in the essential pollination service they provide to both crops and wild plants. Anthropogenic drivers linked to this decline include habitat changes, intensive agriculture, pesticides, invasive alien species, spread of pathogens and climate change1. Recently, the rapid global increase in artificial light at night has been proposed to be a new threat to terrestrial ecosystems; the consequences of this increase for ecosystem function are mostly unknown. Here we show that artificial light at night disrupts nocturnal pollination networks and has negative consequences for plant reproductive success. In artificially illuminated plant–pollinator communities, nocturnal visits to plants were reduced by 62% compared to dark areas. Notably, this resulted in an overall 13% reduction in fruit set of a focal plant even though the plant also received numerous visits by diurnal pollinators. Furthermore, by merging diurnal and nocturnal pollination sub-networks, we show that the structure of these combined networks tends to facilitate the spread of the negative consequences of disrupted nocturnal pollination to daytime pollinator communities. Our findings demonstrate that artificial light at night is a threat to pollination and that the negative effects of artificial light at night on nocturnal pollination are predicted to propagate to the diurnal community, thereby aggravating the decline of the diurnal community. We provide perspectives on the functioning of plant–pollinator communities, showing that nocturnal pollinators are not redundant to diurnal communities and increasing our understanding of the human-induced decline in pollinators and their ecosystem service.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1696  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: