|   | 
Details
   web
Records
Author Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J.
Title Ecological effects of artificial light at night on wild plants Type Journal Article
Year 2016 Publication Journal of Ecology Abbreviated Journal J Ecol
Volume 104 Issue 3 Pages 611-620
Keywords Plants; wild plants; photobiology; Circadian; Ecophysiology; light cycles; light pollution; photoperiodism; photopollution; physiology; sky glow; urban ecology
Abstract 1.Plants use light as a source of both energy and information. Plant physiological responses to light, and interactions between plants and animals (such as herbivory and pollination), have evolved under a more or less stable regime of 24-hour cycles of light and darkness, and, outside of the tropics, seasonal variation in daylength.

2.The rapid spread of outdoor electric lighting across the globe over the past century has caused an unprecedented disruption to these natural light cycles. Artificial light is widespread in the environment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant cities to direct illumination of urban and suburban vegetation.

3.In many cases artificial light in the nighttime environment is sufficiently bright to induce a physiological response in plants, affecting their phenology, growth form and resource allocation. The physiology, behaviour and ecology of herbivores and pollinators is also likely to be impacted by artificial light. Thus, understanding the ecological consequences of artificial light at night is critical to determine the full impact of human activity on ecosystems.

4.Synthesis. Understanding the impacts of artificial nighttime light on wild plants and natural vegetation requires linking the knowledge gained from over a century of experimental research on the impacts of light on plants in the laboratory and greenhouse with knowledge of the intensity, spatial distribution, spectral composition and timing of light in the nighttime environment. To understand fully the extent of these impacts requires conceptual models that can (i) characterise the highly heterogeneous nature of the nighttime light environment at a scale relevant to plant physiology, and (ii) scale physiological responses to predict impacts at the level of the whole plant, population, community and ecosystem.
Address Environment and Sustainability Institute, University of Exeter, Penryn, United Kimgdom; j.j.bennie(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language (up) English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0477 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1350
Permanent link to this record
 

 
Author Ben-Attia, M.; Reinberg, A.; Smolensky, M.H.; Gadacha, W.; Khedaier, A.; Sani, M.; Touitou, Y.; Boughamni, N.G.
Title Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod Type Journal Article
Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 33 Issue 4 Pages 419-430
Keywords Plants; Moonlight
Abstract Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as “waves” with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a “gating” 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) “gated” by 24 h, lunar 29.5-day (bright light of full moon) and annual 365.25-day (prolonged summertime day length) environmental photoperiod cycles.
Address e Departement des Sciences de la Vie, Faculte des Sciences de Bizerte , Universite de Carthage , Zarzouna , Tunisie
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:27030087 Approved no
Call Number LoNNe @ kyba @ Serial 1411
Permanent link to this record
 

 
Author Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W.
Title Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer Type Journal Article
Year 2016 Publication Frontiers in Plant Science Abbreviated Journal Front Plant Sci
Volume 7 Issue Pages 448
Keywords Plants; LED; fruit quality; lighting period; photosynthesis; plant factory; single-truss tomato; supplemental lighting; yield
Abstract Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 mumol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more cost-effective than daytime inter-lighting. Thus, nighttime LED inter-lighting can effectively improve tomato plant growth and yield with lower energy cost compared with daytime both in summer and winter.
Address Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Japan; Department of Biological Sciences, Faculty of Science, The University of Tokyo, Japan
Corporate Author Thesis
Publisher Frontiers Media S.A. Place of Publication Editor
Language (up) English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-462X ISBN Medium
Area Expedition Conference
Notes PMID:27092163; PMCID:PMC4823311 Approved no
Call Number IDA @ john @ Serial 1434
Permanent link to this record
 

 
Author Liu, J.D.; Goodspeed, D.; Sheng, Z.; Li, B.; Yang, Y.; Kliebenstein, D.J.; Braam, J.
Title Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants Type Journal Article
Year 2015 Publication BMC Plant Biology Abbreviated Journal BMC Plant Biol
Volume 15 Issue Pages 92
Keywords Plants
Abstract BACKGROUND: The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. RESULTS: Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. CONCLUSIONS: Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.
Address Department of BioSciences, Rice University, Houston, TX, 77005, USA. braam@rice.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2229 ISBN Medium
Area Expedition Conference
Notes PMID:25879637; PMCID:PMC4396971 Approved no
Call Number LoNNe @ kyba @ Serial 1458
Permanent link to this record
 

 
Author Reinberg, A.; Smolensky, M.H.; Touitou, Y.
Title The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research Type Journal Article
Year 2016 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 33 Issue 5 Pages 465-479
Keywords Moonlight; Commentary; Animals; Plants; Human Health
Abstract Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.
Address a Unite de Chronobiologie , Fondation A de Rothschild , Paris cedex 19 , France
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:27019304 Approved no
Call Number LoNNe @ kyba @ Serial 1460
Permanent link to this record