|   | 
Details
   web
Records
Author Schroer, S.; Hölker, F.
Title Impact of Lighting on Flora and Fauna Type Book Chapter
Year 2016 Publication Handbook of Advanced Lighting Technology Abbreviated Journal
Volume Issue Pages 1-33
Keywords Ecology; Lighting; Artificial light at night; ALAN; Plants; Animals; review
Abstract Technology, especially artificial light at night (ALAN), often has unexpected impacts on the environment. This chapter addresses both the perception of light by various organisms and the impact of ALAN on flora and fauna. The responses to ALAN are subdivided into the effects of light intensity, color spectra, and duration and timing of illumination. The ways organisms perceive light can be as variable as the habitats they live in. ALAN often interferes with natural light information. It is rarely neutral and has significant impacts beyond human perception. For example, UV light reflection of generative plant parts or the direction of light is used by many organisms as information for foraging, finding spawning sites, or communication. Contemporary outdoor lighting often lacks sustainable planning, even though the protection of species, habitat, and human well-being could be improved by adopting simple technical measures. The increasing use of ALAN with high intensities in the blue part of the spectrum, e.g., fluorescent light and LEDs, is discussed as a critical trend. Blue light is a major circadian signal in higher vertebrates and can substantially impact the orientation of organisms such as numerous insect species. A better understanding of how various types and sources of artificial light, and how organisms perceive ALAN, will be an important step towards more sustainable lighting. Such knowledge is the basis for sustainable lighting planning and the development of solutions to protect biodiversity from the effects of outdoor lighting. Maps that describe the rapid changes in ALAN are urgently needed. In addition, measures are required to reduce the increasing use and intensity of ALAN in more remote areas as signaling thresholds in flora and fauna at night are often close to moonlight intensity and far below streetlight levels.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany; schroer(at)igb-berlin.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language (up) English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-00295-8 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1470
Permanent link to this record
 

 
Author ffrench-Constant, R.; Somers-Yeates, R.; Bennie, J.; Economou, T.; Hodgson, D.; Spalding, A.; McGregor, P.
Title Light pollution is associated with earlier tree budburst across the United Kingdom Type Journal Article
Year 2016 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc Roy Soc B Biol Sci
Volume 283 Issue 1833 Pages 1-9
Keywords Plants; light pollution, phenology, species interactions, tree budburst, temperature, urban heat islands; United Kingdom
Abstract The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.
Address Centre for Ecology and Conservation, and 2 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9EZ, UK; rf222(at)exeter.ac.uk
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language (up) English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1472
Permanent link to this record
 

 
Author Margot, J.-L.
Title Insufficient Evidence of Purported Lunar Effect on Pollination in Ephedra Type Journal Article
Year 2015 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 30 Issue 5 Pages 454-456
Keywords Animals; Plants; Moonlight
Abstract It has been suggested that the timing of pollination in Ephedra foeminea coincides with the full moon in July. The implication is that the plant can detect the full moon through light or gravity and that this trait is an evolutionary adaptation that aids the navigation by pollinating insects. Here we show that there are insufficient data to make such a claim, and we predict that pollinations of E. foeminea do not in general coincide with the full moon.
Address Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California, USADepartment of Physics and Astronomy, University of California, Los Angeles, California, USA jlm@astro.ucla.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:26316347 Approved no
Call Number LoNNe @ kyba @ Serial 1557
Permanent link to this record
 

 
Author Tavhare, S.D.; Nishteswar, K.; Shukla, V.J.
Title Influence of lunar cycles on growth of Ashwagandha (Withania somnifera [L.] Dunal) Type Journal Article
Year 2015 Publication Ayu Abbreviated Journal Ayu
Volume 36 Issue 3 Pages 258-264
Keywords Plants; Moonlight
Abstract INTRODUCTION: Ayurvedic classics have advocated to collect the medicinal plants according to part used and seasons in order to get desired pharmacological action and therapeutic benefits. The logic behind this principle is being validated by recent researches. AIM: To analyze the influence of lunar cycles on growth of Ashwagandha in Shishira and Greeshma Ritu (winter and summer season). MATERIALS AND METHODS: Fourteen small crops of Ashwagandha of average size 10 cm were collected on October 7, 2013, from institute campus and then replantation was done at Charaka Herbal Garden, Gujarat Ayurved University, Jamnagar in an area of 60 cm x 60 cm (l x b). No fertilizers or pesticides were used. The plants were watered daily and plants were uprooted as per lunar cycles for analysis. Eight samples were collected and observed during Shishira and Greeshma season on Pournima (full moon) and Amavasya (new moon) days. The measurements were taken thrice and average values were taken into consideration for study purpose. The variations in morphological characteristics such as length, breadth, weight, and number of roots and twigs were studied through statistical procedure of principle component analysis, which makes interpretation of all possible related variables. RESULTS: Root weight (RW), pith diameter (PD) and internodal distance (ID) were found to be increased on full moon days as compared to new moon days. The maximum RW was observed during Greeshma Aashadha Pournima. CONCLUSION: The study has shown a definite influence of lunar cycles on the growth of the plant parts assessed by RW, PD, and ID that have found to be increased on full moon days as compared to new moon days.
Address Department of Pharmaceutical Chemistry Laboratory, Institute for Post Graduate Teaching and Research Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0974-8520 ISBN Medium
Area Expedition Conference
Notes PMID:27313411; PMCID:PMC4895751 Approved no
Call Number LoNNe @ kyba @ Serial 1559
Permanent link to this record
 

 
Author Joo, Y.; Fragoso, V.; Yon, F.; Baldwin, I.T.; Kim, S.-G.
Title The circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature Type Journal Article
Year 2017 Publication Journal of Integrative Plant Biology Abbreviated Journal J Integr Plant Biol
Volume 59 Issue 8 Pages 572-587
Keywords plants
Abstract The circadian clock is known to increase plant growth and fitness, and thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light-and dark-adapted photosynthetic rates (Ac ) throughout a 24 h day in empty vector-transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA-and NaPhyB1-silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field. irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac . Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark-adapted plants at night; irLHY plants lost these time-dependent responses. The role of NaLHY in gating photosynthesis is independent of the light-dependent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light-mediated in native tobacco.
Address Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Str. 8, D-07745, Jena, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1672-9072 ISBN Medium
Area Expedition Conference
Notes PMID:28429400 Approved no
Call Number LoNNe @ kyba @ Serial 1657
Permanent link to this record