toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tinus, R. W. url  openurl
  Title Effects of Extended Photoperiod on Southern Rocky Mountain Engelmann Spruce and Douglas-fir Type Journal Article
  Year 1981 Publication Tree Planters' Notes Abbreviated Journal  
  Volume 32 Issue 4 Pages  
  Keywords Plants  
  Abstract Four sources of Engelmann spruce and two of Douglas-fir were grown under eight different extended photoperiod regimes. Incandescent light 1 minute of every 15 at night at 270 lux was more effective than continuous incandescent at 1200 lux or intermittent fluorescent at 950 lux at preventing bud dormancy and maintaining continuous height growth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2368  
Permanent link to this record
 

 
Author Lawrence, B.K.; Fehr, W.R. url  doi
openurl 
  Title Reproductive Response of Soybeans to Night Interruption1 Type Journal Article
  Year 1981 Publication Crop Science Abbreviated Journal  
  Volume 21 Issue 5 Pages 755  
  Keywords Plants  
  Abstract Artificial lights may be used to delay flowering of soybean [Glycine max (L.) Merr.] cultivars. Previous research has suggested that night interruption imposed every other night would delay flowering as much as every-night interruption. Our objective was to evaluate the reproductive development of cultivars when exposed to night interruption every night compared with exposure every other night. One cultivar of each Maturity Group 00 through V was grown in the field at Ames, Iowa during 1978 and 1979. The four light treatments imposed every night or every other night included illumination with incandescent light from sunset to sunrise, 2300 to 0030 hours, 0030 to 0200 hours, or 0200 to 0330 hours. Control plots were not exposed to artificial light.

The average number of days that reproductive development was delayed beyond the control was twice as great for the every-night treatments as for the every-other-night treatments. Illumination from sunset to sunrise delayed reproductive development significantly more than the treatments of night interruption for 1.5 hours. Night interruption near the end of the dark period (0200 to 0330 hours) delayed reproductive development more than the earlier interruptions.

The results did not support the hypothesis that light treatments every other night would delay reproductive development as much as every-night interruptions. The lighting regime needed to delay reproductive development will depend on the photoperiod requirements of the cultivars and duration of the delay that is desired.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-183X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2367  
Permanent link to this record
 

 
Author Apostol, K.; Dumroese, R.K.; Pinto, J.R.; Davis, A.S. url  doi
openurl 
  Title Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps Type Journal Article
  Year 2015 Publication Canadian Journal of Forest Research Abbreviated Journal Can. J. For. Res.  
  Volume 45 Issue 12 Pages 1711-1719  
  Keywords plants  
  Abstract Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure sodium (HPS) lamps on growth and physiology of Pseudotsuga menziesii (Douglas-fir) and Picea engelmannii (Engelmann spruce) seedlings. We used three latitudinal sources for each species: British Columbia (BC), Idaho (ID), and New Mexico (NM). Container seedlings were grown for 17 weeks in the greenhouse under an 18-h photoperiod of ambient solar light supplemented with light delivered from HPS or LED. In general, seedlings grown under LED had significantly greater growth, gas exchange rates, and chlorophyll contents than those seedlings grown under HPS. The growth and physiological responses to supplemental lighting varied greatly among species and seed sources. Generally, LED-grown seedlings from BC had the greatest growth and tissue dry matter followed by ID and NM populations. Compared with HPS, the significant increase in seedling growth and concomitant energy savings with LED (29% energy consumption relative to HPS) demonstrates the promise of using LED as PAR supplemental lighting for container seedling production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-5067 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1250  
Permanent link to this record
 

 
Author Pocock, T. url  doi
openurl 
  Title Advanced lighting technology in controlled environment agriculture Type Journal Article
  Year 2016 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 48 Issue 1 Pages 83-94  
  Keywords Plants; Lighting  
  Abstract There is a recent awareness of the importance of plants in our everyday lives. Light is a requirement for plants and serves two important roles. It provides energy for growth and provides information that elicits plant responses including, among others, plant shape, pigmentation, nutritional content and resistance to stress. Light is paradoxical to plants, it is a requirement however, in excess it is damaging. Plants sense and interpret light through many families of photoreceptors and through the energy state of the photosynthetic apparatus. Light emitting diodes (LEDs) are quickly replacing traditional light sources for human applications, and currently there is effort being put into tailoring these technology platforms for the plant community. Potential plant sensing pathways and the spectral effects on pigmentation and photochemistry in red lettuce are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1383  
Permanent link to this record
 

 
Author Matsuda, R.; Yamano, T.; Murakami, K.; Fujiwara, K. url  doi
openurl 
  Title Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury Type Journal Article
  Year 2016 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae  
  Volume 198 Issue Pages 363-369  
  Keywords Plants  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4238 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1387  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: